cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A227406 Number of unimodal functions f:[n]->[2^n].

Original entry on oeis.org

1, 2, 16, 372, 24616, 5014592, 3349471840, 7649590386464, 61356625102897216, 1758844330913892684288, 182379122144778004351027200, 69026760045145802122822210022400, 96048744530120196897251255933762037760, 494360393380904255996973467025921794482614272
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> sum(binomial(n+2*j-1, 2*j), j=0..2^n-1):
    seq(a(n), n=0..20);
  • Mathematica
    Table[Sum[Binomial[n+2*j-1,2*j],{j,0,2^n-1}],{n,0,15}] (* Vaclav Kotesovec, Sep 22 2013 *)

Formula

a(n) = Sum_{j=0..2^n-1} C(n+2*j-1,2*j).
a(n) = A071921(n,2^n).
a(n) ~ 2^(n^2+n-1)/n!. - Vaclav Kotesovec, Sep 22 2013

A225011 Number of 4 X n 0..1 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

5, 25, 95, 295, 791, 1897, 4166, 8518, 16414, 30086, 52834, 89402, 146446, 233108, 361711, 548591, 815083, 1188679, 1704377, 2406241, 3349193, 4601059, 6244892, 8381596, 11132876, 14644540, 19090180, 24675260, 31641640, 40272566, 50898157
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2013

Keywords

Comments

Row 4 of A225010.
Apparently also column 5 of A071920. - R. J. Mathar, May 17 2014

Examples

			Some solutions for n=3
..0..1..0....0..0..0....0..0..1....0..0..0....1..0..0....1..0..0....0..0..1
..0..1..1....0..1..0....0..1..1....0..0..0....1..0..0....1..0..0....0..0..1
..1..1..1....0..1..0....1..1..1....0..0..0....1..1..0....1..0..0....0..0..1
..1..1..1....0..1..0....1..1..1....0..0..1....1..1..0....1..1..1....0..1..1
		

Crossrefs

Formula

Empirical: a(n) = (1/40320)*n^8 + (1/1440)*n^7 + (3/320)*n^6 + (5/72)*n^5 + (629/1920)*n^4 + (1279/1440)*n^3 + (16763/10080)*n^2 + (25/24)*n + 1 = 1 + n* (n+1) *(n^6 + 27*n^5 + 351*n^4 + 2449*n^3 + 10760*n^2 + 25052*n + 42000)/40320.
Empirical: G.f.: -x*(x^4 - 5*x^3 + 10*x^2 - 10*x + 5) *(x^4 - 3*x^3 + 4*x^2 - 2*x + 1) / (x-1)^9. - R. J. Mathar, May 17 2014

A225012 Number of 5 X n 0..1 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

6, 36, 161, 581, 1792, 4900, 12174, 27966, 60172, 122464, 237590, 442118, 793092, 1377174, 2322967, 3817351, 6126818, 9624964, 14827487, 22436251, 33394208, 48953224, 70757132, 100942636, 142261016, 198223936, 273277036, 373005396
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2013

Keywords

Comments

Row 5 of A225010.
Apparently column 6 of A071920. - R. J. Mathar, May 17 2014

Examples

			Some solutions for n=3
..0..0..0....0..1..0....0..1..0....1..0..0....0..0..0....0..0..0....0..0..0
..1..0..0....0..1..0....1..1..0....1..1..0....0..0..1....0..0..0....0..1..1
..1..0..0....0..1..0....1..1..1....1..1..0....0..1..1....0..1..0....0..1..1
..1..1..0....0..1..1....1..1..1....1..1..1....0..1..1....0..1..1....1..1..1
..1..1..0....0..1..1....1..1..1....1..1..1....0..1..1....1..1..1....1..1..1
		

Formula

Empirical: a(n) = (1/3628800)*n^10 + (1/80640)*n^9 + (1/3780)*n^8 + (19/5760)*n^7 + (4633/172800)*n^6 + (331/2304)*n^5 + (191249/362880)*n^4 + (24421/20160)*n^3 + (10897/5600)*n^2 + (137/120)*n + 1 = 1 + n*(n+1)* (n^8 + 44*n^7 + 916*n^6 + 11054*n^5 + 86239*n^4 + 435086*n^3 + 1477404*n^2 + 2918376*n + 4142880)/ 3628800.
Empirical: G.f.: -x*(x^2 - 3*x + 3) *(x^2 - 2*x + 2) *(x^2 - x + 1) *(x^4 - 4*x^3 + 5*x^2 - 2*x + 1) / (x-1)^11. - R. J. Mathar, May 17 2014
Previous Showing 11-13 of 13 results.