cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A272055 Decimal expansion of -1/(e^2 Ei(-1)), an increasing rooted tree enumeration constant associated with the Euler-Gompertz constant, where Ei is the exponential integral.

Original entry on oeis.org

6, 1, 6, 8, 8, 7, 8, 4, 8, 2, 8, 0, 7, 2, 7, 0, 7, 1, 4, 4, 4, 9, 3, 8, 3, 4, 5, 6, 6, 2, 2, 8, 5, 4, 9, 3, 5, 2, 4, 9, 0, 0, 5, 6, 9, 3, 3, 1, 6, 8, 8, 1, 7, 8, 6, 5, 6, 6, 1, 0, 3, 3, 2, 3, 1, 9, 1, 4, 3, 7, 2, 4, 2, 5, 1, 5, 4, 7, 6, 7, 2, 7, 3, 0, 3, 3, 9, 8, 2, 5, 6, 0, 3, 1, 4, 9, 4, 8, 3, 4, 5, 1, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 19 2016

Keywords

Examples

			0.61688784828072707144493834566228549352490056933168817865661...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.

Crossrefs

Programs

  • Mathematica
    RealDigits[-1/(E^2*ExpIntegralEi[-1]), 10, 103][[1]]
  • PARI
    default(realprecision, 100); 1/(exp(2)*eint1(1)) \\ G. C. Greubel, Sep 07 2018

Formula

Equals 1 / (e * A073003).
Also equals -1 / (e^2 * (gamma - Sum_{n>=1} (-1)^(n-1)/(n*n!))), where gamma is the Euler-Mascheroni constant A001620.

A369883 Decimal expansion of Integral_{x=0..1} x/(1 - log(x)) dx.

Original entry on oeis.org

3, 6, 1, 3, 2, 8, 6, 1, 6, 8, 8, 8, 2, 2, 2, 5, 8, 4, 6, 9, 7, 1, 6, 1, 6, 5, 7, 6, 7, 8, 7, 3, 9, 9, 3, 8, 9, 5, 4, 5, 9, 0, 6, 4, 1, 5, 4, 7, 3, 0, 2, 3, 9, 6, 1, 7, 1, 3, 7, 7, 2, 3, 4, 5, 7, 8, 8, 8, 1, 7, 6, 7, 0, 8, 1, 4, 9, 0, 5, 8, 8, 5, 8, 4, 5, 0, 4, 8, 8, 5, 7, 9, 3, 7, 8, 0, 7, 8, 2, 8, 8, 3, 5, 3, 5
Offset: 0

Views

Author

Claude H. R. Dequatre, Feb 04 2024

Keywords

Examples

			0.361328616888222584697161657678739938954590641...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-E^2 * ExpIntegralEi[-2], 10, 120][[1]] (* Amiram Eldar, Feb 04 2024 *)
  • PARI
    intnum(x=0,1,x/(1-log(x)))

Formula

Equals Integral_{x=0..1} x/(1 - log(x)) dx.
Equals - e^2*Ei(-2), where Ei(x) is the Exponential Integral function [Shamos].
Equals Integral_{x=0..oo} dx/(e^x*(x + 2)) [Shamos].
Previous Showing 21-22 of 22 results.