cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A110222 Palindromic numbers which are not the absolute difference of a cube and a square.

Original entry on oeis.org

6, 66, 77, 88, 111, 181, 202, 363, 383, 434, 454, 474, 494, 555, 565, 595, 606, 646, 666, 707, 717, 747, 787, 818, 838, 858, 929, 949, 959, 979, 989, 1221, 1551, 1661, 2002, 2442, 2662, 3003, 3443, 3773, 3883, 4114, 4334, 4444, 4774, 4884, 5005, 5115, 5335
Offset: 1

Views

Author

Robert G. Wilson v, Jul 16 2005

Keywords

Comments

The palindromes in A110223.

Crossrefs

Programs

  • Mathematica
    NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] > FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]]; t1 = NestList[ NextPalindrome, 0, 130]; t2 = Union[ Flatten[ Table[ Select[ Table[ Abs[n^3 - m^2], {m, 0, 10000}], # < 10^3 &], {n, -5000, 5000}]]]; Take[ Complement[t1, Intersection[t1, t2]], 50]

A253237 Conjectured largest perfect power k such that k+n is also a perfect power, or 0 if no such k exists.

Original entry on oeis.org

8, 25, 125, 121, 27, 0, 32761, 97336, 64000, 2187, 3364, 2197, 4900, 0, 1295029, 128, 143384152904, 343, 503284356, 196, 100, 2187, 2025, 542939080312, 144, 6436343, 216, 131044, 196, 6859, 225, 7744, 256, 0, 1296, 1728, 14348907, 1331, 10609, 2704, 400, 0, 441, 125, 9216
Offset: 1

Views

Author

Eric Chen, Apr 04 2015

Keywords

Comments

Only a(1) is proven, all other terms (even including a(2)) are only conjectured.
These terms are searched up to 10^18, and no terms are greater than 10^12.
a(n) = A103953(n) for n in A076438.
See A076427 for further information. - M. F. Hasler, Apr 09 2015

Crossrefs

Formula

a(A074981(n)) = 0.
Previous Showing 21-22 of 22 results.