A075391
Product/n^n of n-th group in A075383.
Original entry on oeis.org
1, 2, 6, 120, 180, 36288, 6720, 24710400, 227026800, 12108096000, 121080960, 197110116403200, 67365043200, 201490341212160000, 1001829765736800000, 850009620666286080000, 2144384782848000, 5991810785878910952960000
Offset: 1
A076034
Group the natural numbers so that the n-th group contains the smallest set of n relatively prime numbers: (1), (2, 3), (4, 5, 7), (6, 11, 13, 17), (8, 9, 19, 23, 25), (10, 21, 29, 31, 37, 41), ...
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 6, 11, 13, 17, 8, 9, 19, 23, 25, 10, 21, 29, 31, 37, 41, 12, 35, 43, 47, 53, 59, 61, 14, 15, 67, 71, 73, 79, 83, 89, 16, 27, 49, 55, 97, 101, 103, 107, 109, 18, 65, 77, 113, 127, 131, 137, 139, 149, 151, 20, 33, 91, 157, 163, 167, 173, 179, 181, 191, 193
Offset: 1
The triangle begins:
1;
2, 3;
4, 5, 7;
6, 11, 13, 17;
8, 9, 19, 23, 25;
10, 21, 29, 31, 37, 41;
...
-
S:=[$1..1000]: Res:= NULL:
for n from 1 to 20 do
A:= [S[1]]; R:= 1; count:= 1;
for k from 2 while count < n do
if andmap(t -> igcd(t,S[k])=1, A) then count:= count+1; A:= [op(A),S[k]]; R:= R,k; fi
od;
S:= subsop(op(map(t -> t=NULL, [R])),S);
Res:= Res, op(A);
od:
Res; # Robert Israel, Dec 04 2022
-
# See Links section.
Crossrefs added by
Paul Tek, Oct 24 2015
A072205
a(n) = (p^2 - p + 2)/2 for p = prime(n); number of squares modulo p^2.
Original entry on oeis.org
2, 4, 11, 22, 56, 79, 137, 172, 254, 407, 466, 667, 821, 904, 1082, 1379, 1712, 1831, 2212, 2486, 2629, 3082, 3404, 3917, 4657, 5051, 5254, 5672, 5887, 6329, 8002, 8516, 9317, 9592, 11027, 11326, 12247, 13204, 13862, 14879, 15932, 16291, 18146, 18529
Offset: 1
-
seq[n_Integer?Positive] := Module[{fn01 = 1, fn10 = 1, fnout = 1}, Do[{fn10, fn01, fnout} = {fn10 + 1, fn01 + fn10, fn01 + fnout}, {n - 1}]; {fn10, fn01, fnout}]; Ar = Flatten[ Table[ seq[ Prime[n]], {n, 1, 50}]]; a = {}; Do[a = Append[a, Ar[[n]]], {n, 2, 150, 3}]; a
-
a(n)=binomial(prime(n),2)+1 \\ Charles R Greathouse IV, Jan 11 2012
-
[(p^2 - p + 2)/2 for p in prime_range(200)]
A371236
Triangle T(n, k), n > 0, k = 1..n, read and filled in the greedy way by rows with distinct positive integers such that for any n > 0, the terms in the n-th row are congruent modulo n.
Original entry on oeis.org
1, 2, 4, 3, 6, 9, 5, 13, 17, 21, 7, 12, 22, 27, 32, 8, 14, 20, 26, 38, 44, 10, 24, 31, 45, 52, 59, 66, 11, 19, 35, 43, 51, 67, 75, 83, 15, 33, 42, 60, 69, 78, 87, 96, 105, 16, 36, 46, 56, 76, 86, 106, 116, 126, 136, 18, 29, 40, 62, 73, 84, 95, 117, 128, 139, 150
Offset: 1
Triangle T(n, k) begins:
1
2 4
3 6 9
5 13 17 21
7 12 22 27 32
8 14 20 26 38 44
10 24 31 45 52 59 66
11 19 35 43 51 67 75 83
A376903
Lexicographically earliest sequence of distinct positive integers with a(1) multiples of 1 followed by a(2) multiples of 2 etc.
Original entry on oeis.org
1, 2, 4, 3, 6, 9, 12, 8, 16, 20, 5, 10, 15, 25, 30, 35, 18, 24, 36, 42, 48, 54, 60, 66, 72, 7, 14, 21, 28, 49, 56, 63, 70, 77, 84, 91, 98, 32, 40, 64, 80, 88, 96, 104, 112, 27, 45, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 50, 100, 110, 120
Offset: 1
The first terms/rows are:
n a(n) n-th row
- ---- ---------------------------------------------
1 1 1
2 2 2, 4
3 4 3, 6, 9, 12
4 3 8, 16, 20
5 6 5, 10, 15, 25, 30, 35
6 9 18, 24, 36, 42, 48, 54, 60, 66, 72
7 12 7, 14, 21, 28, 49, 56, 63, 70, 77, 84, 91, 98
-
\\ See Links section.
-
from itertools import count, islice
def A376903gen(): # generator of terms
aset, alst = {1, 2, 4}, [1, 2, 4]
yield from [1, 2, 4]
for n in count(3):
nlst = []
for k in count(n, n):
if k not in aset:
nlst.append(k)
if len(nlst) == alst[n-1]:
break
yield from nlst
alst.extend(nlst)
aset.update(nlst)
print(list(islice(A376903gen(), 100))) # Michael S. Branicky, Oct 16 2024
A337918
Rearrangement of natural numbers so that next n numbers contain n as substring.
Original entry on oeis.org
1, 2, 12, 3, 13, 23, 4, 14, 24, 34, 5, 15, 25, 35, 45, 6, 16, 26, 36, 46, 56, 7, 17, 27, 37, 47, 57, 67, 8, 18, 28, 38, 48, 58, 68, 78, 9, 19, 29, 39, 49, 59, 69, 79, 89, 10, 100, 101, 102, 103, 104, 105, 106, 107, 108, 11, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119
Offset: 1
As a triangle, the first rows are:
1: 1
2: 2, 12
3: 3, 13, 23
4: 4, 14, 24, 34
5: 5, 15, 25, 35, 45
6: 6, 16, 26, 36, 46, 56
7: 7, 17, 27, 37, 47, 57, 67
8: 8, 18, 28, 38, 48, 58, 68, 78
9: 9, 19, 29, 39, 49, 59, 69, 79, 89
10: 10, 100, 101, 102, 103, 104, 105, 106, 107, 108
11: 11, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119
12: 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 212, 312
Original entry on oeis.org
1, 2, 3, 4, 56, 11, 57, 22, 5, 8, 28, 7, 3082, 254, 79, 6, 9317, 9, 907, 12, 17, 174, 8003, 137, 23, 33, 667, 14, 677, 13
Offset: 1
A284038
Lexicographically earliest sequence of distinct positive terms such that A000196(n) divides a(n).
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 10, 12, 9, 15, 18, 21, 24, 27, 30, 16, 20, 28, 32, 36, 40, 44, 48, 52, 5, 25, 35, 45, 50, 55, 60, 65, 70, 75, 80, 42, 54, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 7, 14, 49, 56, 63, 77, 91, 98, 105, 112, 119, 133, 140, 147, 154, 64
Offset: 1
Comments