cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A346505 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^2) / (1 - x + 2 * x^2).

Original entry on oeis.org

1, 2, 4, 12, 44, 172, 700, 2940, 12652, 55500, 247260, 1115740, 5088908, 23423020, 108659324, 507520316, 2384733868, 11264884876, 53464215580, 254822253852, 1219182031820, 5853309920748, 28190437248700, 136160853462524, 659401832797676, 3201141695492172, 15575294057678428
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = (1 + x A[x]^2)/(1 - x + 2 x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + Sum[a[k] a[n - k - 1], {k, 2, n - 1}]; Table[a[n], {n, 0, 26}]
    CoefficientList[Series[(1 - x*(1 - 2*x)) * (1 - Sqrt[1 - 4*x/(-1 + x - 2*x^2)^2]) / (2*x), {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=2..n-1} a(k) * a(n-k-1).
From Vaclav Kotesovec, Sep 26 2023: (Start)
G.f.: (1 - x*(1 - 2*x))*(1 - sqrt(1 - 4*x/(-1 + x - 2*x^2)^2))/(2*x).
a(n) ~ sqrt((69 + 57*sqrt(114) + 23*3^(5/6)*sqrt(38)*(9 + 2*sqrt(114))^(1/3) - 36*3^(1/6)*sqrt(38)*(9 + 2*sqrt(114))^(2/3) + 291*(27 + 6*sqrt(114))^(1/3) - 54*(27 + 6*sqrt(114))^(2/3))/(-72 - 16*sqrt(114) + 3^(11/6)*sqrt(38)*(9 + 2*sqrt(114))^(1/3) + 3^(1/6)*sqrt(38)*(9 + 2*sqrt(114))^(2/3) + 26*(27 + 6*sqrt(114))^(1/3) - 6*(27 + 6*sqrt(114))^(2/3))) * 2^(n - 1/2) * 3^(1/6 + 4*n/3) * ((9 + 2*sqrt(114))^((1/3)*(n-1)) / (sqrt(Pi) * n^(3/2) * (-15 + (27 + 6*sqrt(114))^(2/3))^n)). (End)

A346506 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^2) / (1 - x + x^2).

Original entry on oeis.org

1, 2, 5, 17, 66, 274, 1190, 5341, 24577, 115326, 549747, 2654739, 12959468, 63848307, 317064921, 1585380283, 7975134892, 40332823042, 204947059412, 1045859173864, 5357606584326, 27540884494209, 142023060613755, 734506610474205, 3808771672620618, 19798640525731461, 103149287155802941
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = (1 + x A[x]^2)/(1 - x + x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 2; a[n_] := a[n] = 2 a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 1], {k, 2, n - 1}]; Table[a[n], {n, 0, 26}]

Formula

a(0) = 1, a(1) = 2; a(n) = 2 * a(n-1) + a(n-2) + Sum_{k=2..n-1} a(k) * a(n-k-1).
From Nikolaos Pantelidis, Jan 08 2023 (Start)
G.f.: 1/G(0), where G(k) = 1-(2*x-x^2)/(1-x/G(k+1)) (continued fraction).
G.f.: (1-x+x^2-sqrt(x^4-2*x^3+3*x^2-6*x+1))/(2*x).
(End)
Previous Showing 11-12 of 12 results.