cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A334060 Triangle read by rows: T(n,k) is the number of set partitions of {1..3n} into n sets of 3 with k disjoint strings of adjacent sets, each being a contiguous set of elements.

Original entry on oeis.org

1, 0, 1, 7, 3, 0, 219, 56, 5, 0, 12861, 2352, 183, 4, 0, 1215794, 174137, 11145, 323, 1, 0, 169509845, 19970411, 1078977, 30833, 334, 0, 0, 32774737463, 3280250014, 153076174, 4056764, 55379, 206, 0, 0, 8400108766161, 730845033406, 29989041076, 727278456, 10341101, 67730, 70, 0, 0
Offset: 0

Views

Author

Donovan Young, May 26 2020

Keywords

Comments

Number of configurations with k connected components (consisting of polyomino matchings) in the generalized game of memory played on the path of length 3n, see [Young].

Examples

			Triangle begins:
      1;
      0,    1;
      7,    3,   0;
    219,   56,   5, 0;
  12861, 2352, 183, 4, 0;
  ...
For n=2 and k=1 the configurations are (1,5,6),(2,3,4) and (1,2,6),(3,4,5) (i.e. configurations with a single contiguous set) and (1,2,3),(4,5,6) (i.e. two adjacent contiguous sets); hence T(2,1) = 3.
		

Crossrefs

Row sums are A025035.
Column k=0 is column 0 of A334056.

Programs

  • Mathematica
    CoefficientList[Normal[Series[Sum[y^j*(3*j)!/6^j/j!*((1-y*(1-z))/(1-y^2*(1-z)))^(3*j+1), {j, 0, 20}], {y, 0, 20}]], {y, z}]
  • PARI
    T(n)={my(v=Vec(sum(j=0, n, (3*j)! * x^j * (1-(1-y)*x + O(x*x^n))^(3*j+1) / (j! * 6^j * (1-(1-y)*x^2 + O(x*x^n))^(3*j+1))))); vector(#v, i, Vecrev(v[i], i))}
    { my(A=T(8)); for(n=1, #A, print(A[n])) }

Formula

G.f.: Sum_{j>=0} (3*j)! * y^j * (1-(1-z)*y)^(3*j+1) / (j! * 6^j * (1-(1-z)*y^2)^(3*j+1)).

A325754 Triangle read by rows giving the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that exactly k such pairs are joined by a horizontal edge.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 7, 4, 4, 0, 43, 38, 21, 2, 1, 372, 360, 168, 36, 9, 0, 4027, 3972, 1818, 478, 93, 6, 1, 51871, 51444, 23760, 6640, 1260, 144, 16, 0, 773186, 768732, 358723, 103154, 20205, 2734, 278, 12, 1, 13083385, 13027060, 6129670, 1796740, 363595, 52900, 5650, 400, 25, 0
Offset: 0

Views

Author

Donovan Young, May 19 2019

Keywords

Comments

This is the number of "k-horizontal-domino" configurations in the game of memory played on a 2 X n rectangular array, see [Young].

Examples

			The first few rows of T(n,k) are:
  1;
  1,  0;
  2,  0,  1;
  7,  4,  4,  0;
  43, 38, 21, 2, 1;
  ...
For n=2, let the vertex set of P_2 X P_2 be {A,B,C,D} and the edge set be {AB, AC, BD, CD}, where AB and CD are horizontal edges. For k=0, we may place the pairs on A, C and B, D or on A, D and B, C, hence T(2,0) = 2. If we place a pair on one of the horizontal edges we are forced to place the other pair on the remaining horizontal edge, hence T(2,1)=0 and T(2,2)=1.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Normal[Series[Sum[Factorial2[2*k-1]*y^k/(1-(1-z)*y)/(1+(1-z)*y)^(2*k+1), {k, 0, 20}], {y, 0, 20}]], {y, z}];

Formula

G.f.: Sum_{j>=0} (2*j-1)!! y^j/(1-(1-z)*y)/(1+(1-z)*y)^(2*j+1).
E.g.f.: exp((sqrt(1 - 2 y)-1) (1 - z))/sqrt(1 - 2 y) - exp((y - 2) (1 - z)) sqrt(Pi/2) sqrt(1 - z) (-erfi(sqrt(2) sqrt(1 - z)) + erfi(((1 + sqrt(1 - 2 y)) sqrt(1 - z))/sqrt(2))).

A334061 Triangle read by rows: T(n,k) is the number of set partitions of {1..4n} into n sets of 4 with k disjoint strings of adjacent sets, each being a contiguous set of elements.

Original entry on oeis.org

1, 0, 1, 31, 4, 0, 5474, 292, 9, 0, 2554091, 72318, 1206, 10, 0, 2502018819, 43707943, 438987, 2871, 5, 0, 4456194509950, 52717010017, 351487598, 1622954, 4355, 1, 0, 13077453070386914, 111615599664989, 528618296314, 1764575884, 4080889, 4385, 0, 0
Offset: 0

Views

Author

Donovan Young, May 26 2020

Keywords

Comments

Number of configurations with k connected components (consisting of polyomino matchings) in the generalized game of memory played on the path of length 4n, see [Young].

Examples

			Triangle begins:
        1;
        0,     1;
       31,     4,   0;
     5474,   292,   9,  0;
  2554091, 72318,1206, 10, 0;
  ...
For n=2 and k=1 the configurations are (1,6,7,8),(2,3,4,5), as well as (1,2,7,8),(3,4,5,6) and also (1,2,3,8),(4,5,6,7) (i.e. configurations with a single contiguous set) and (1,2,3,4),(5,6,7,8) (i.e. two adjacent contiguous sets); hence T(2,1) = 4.
		

Crossrefs

Row sums are A025036.
Column k=0 is column 0 of A334057.

Programs

  • Mathematica
    CoefficientList[Normal[Series[Sum[y^j*(4*j)!/24^j/j!*((1-y*(1-z))/(1-y^2*(1-z)))^(4*j+1), {j, 0, 20}], {y, 0, 20}]], {y, z}]
  • PARI
    T(n)={my(v=Vec(sum(j=0, n, (4*j)! * x^j * (1-(1-y)*x + O(x*x^n))^(4*j+1) / (j! * 24^j * (1-(1-y)*x^2 + O(x*x^n))^(4*j+1))))); vector(#v, i, Vecrev(v[i], i))}
    { my(A=T(8)); for(n=1, #A, print(A[n])) }

Formula

G.f.: Sum_{j>=0} (4*j)! * y^j * (1-(1-z)*y)^(4*j+1) / (j! * 24^j * (1-(1-z)*y^2)^(4*j+1)).

A367000 Triangle read by rows: T(n,k) is the total number of bubbles of size k found in linear chord diagrams on 2n vertices.

Original entry on oeis.org

0, 0, 2, 0, 0, 1, 8, 4, 2, 2, 0, 5, 42, 30, 20, 15, 12, 10, 0, 36, 300, 240, 186, 147, 120, 99, 82, 72, 0, 329, 2730, 2310, 1920, 1605, 1356, 1155, 988, 848, 730, 658, 0, 3655, 30240, 26460, 22890, 19845, 17280, 15105, 13242, 11634, 10240, 9027, 7968, 7310, 0, 47844
Offset: 0

Views

Author

Donovan Young, Oct 31 2023

Keywords

Comments

A bubble is defined as a set of consecutive vertices such that no two adjacent vertices are joined by a chord, i.e., "short" chords are not allowed. A bubble is therefore bounded externally either by short chords, or by the ends of the diagram. T(n,k) counts the total number of bubbles consisting of k > 0 vertices, counted across all linear chord diagrams on 2n > 0 vertices.

Examples

			The first few rows of T(n,k) are:
   0,   0;
   2,   0,   0,   1;
   8,   4,   2,   2,   0,   5;
  42,  30,  20,  15,  12,  10,   0,  36;
For n = 2, let the four vertices be A, B, C, D. The diagram consisting of the chords (A,B) and (C,D) has no bubbles. The diagram consisting of the chords (A,D) and (B,C) has two bubbles of size 1: The vertex A is one bubble and the vertex D is the other. The diagram consisting of the chords (A,C) and (B,D) is itself a bubble of size 4. Hence T(2,1) = 2 and T(2,4) = 1.
		

Crossrefs

The last entry in each row forms A278990. See also A079267.

Programs

  • PARI
    N=2*n;
    G=0; for(j=0,j=N/2, G=G+taylor((1/((1 + w*(-1 + w*y^2))^2))*((((w^2*y^2)/(2*(1 + w^2*y^2)^2))^j*(2*j)!/j!* (-1 + w)^2*(-1 + w*y^2)^2)/(1 + w^2*y^2) - ((y^2)/2)^j/j!*w*y^2*((-2 + 2*w + (3 -4*w)*w*y^2 + (w + 2*(-1 + w)*w^2)*y^4 + w^3*y^6 )*(2*j)!+(-y^4 + w*y^4+ w*y^6 - 2*w^2*y^6 + w^3*y^8 )*(2*j+2)!)),y,N+1); );
    Tn=vector(N,x,0);
    for(k=1,k=N,Tn[k]=polcoeff(polcoeff(G,N,y),k,w););

Formula

G.f.: Sum_{j=0..n} (1/(1 + w*(-1 + w*y^2))^2)*((((w^2*y^2)/(2*(1 + w^2*y^2)^2))^j*((2*j)!/j!)* (-1 + w)^2*(-1 + w*y^2)^2)/(1 + w^2*y^2) - ((y^2)/2)^j*(w*y^2/j!)*((-2 + 2*w + (3 - 4*w)*w*y^2 + (w + 2*(-1 + w)*w^2)*y^4 + w^3*y^6)*(2*j)! + (-y^4 + w*y^4 + w*y^6 - 2*w^2*y^6 + w^3*y^8)*(2*j+2)!)).
Previous Showing 11-14 of 14 results.