cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A364971 Number T(n,k) of partitions of [n] for which the difference between the longest and the shortest block size is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 4, 2, 35, 10, 5, 27, 60, 95, 15, 6, 2, 371, 315, 161, 21, 7, 142, 938, 2002, 770, 252, 28, 8, 282, 4005, 9744, 5313, 1386, 372, 36, 9, 1073, 16950, 50275, 33705, 11082, 2310, 525, 45, 10, 2, 74657, 283525, 217800, 78078, 20097, 3630, 715, 55, 11
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2023

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			T(4,0) = 5: 1|2|3|4, 12|34, 13|24, 14|23, 1234.
T(4,1) = 6: 1|2|34, 1|23|4, 1|24|3, 12|3|4, 13|2|4, 14|2|3.
T(4,2) = 4: 1|234, 123|4, 124|3, 134|2.
Triangle T(n,k) begins:
     1;
     1;
     2;
     2,     3;
     5,     6,     4;
     2,    35,    10,     5;
    27,    60,    95,    15,     6;
     2,   371,   315,   161,    21,    7;
   142,   938,  2002,   770,   252,   28,   8;
   282,  4005,  9744,  5313,  1386,  372,  36,  9;
  1073, 16950, 50275, 33705, 11082, 2310, 525, 45, 10;
  ...
		

Crossrefs

Row sums give A000110.
Column k=0 gives A038041 (for n>=1).
T(n,n-2) gives A000027 (for n>=2).

Programs

  • Maple
    b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add(
         b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := CoefficientList[b[n, n, 0], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Oct 27 2023, after Alois P. Heinz *)

A108947 Triangle: T(n,k) is the partition function G(n-k,k).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 2, 1, 1, 0, 1, 10, 5, 2, 1, 1, 0, 1, 26, 14, 5, 2, 1, 1, 0, 1, 76, 46, 15, 5, 2, 1, 1, 0, 1, 232, 166, 51, 15, 5, 2, 1, 1, 0, 1, 764, 652, 196, 52, 15, 5, 2, 1, 1, 0, 1, 2620, 2780, 827, 202, 52, 15, 5, 2, 1, 1
Offset: 0

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

See entries for A001680 and A001681 for appropriate references.

Crossrefs

Cf. A000110. First differences of a sequence G(k, 0), G(k, 1), ... give a row of A080510 (e.g., 0, 1, 10, 14, 15, 15, ... gives 1, 9, 4, 1).

Programs

  • Maple
    G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(G(n-i*j, i-1)*n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    T:= (n, k)-> G(n-k, k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 15 2013
  • Mathematica
    G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1]*n!/i!^j/(n-i*j)! /j!, {j, 0, n/i}]]]; T[n_, k_] := G[n-k, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

E.g.f. for sequence G(0, k), G(1, k), ... is exp(x + (1/2)*x^2 + ... + (1/k!)*x^k).

Extensions

One term corrected by Alois P. Heinz, Sep 15 2013
Previous Showing 31-32 of 32 results.