cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-56 of 56 results.

A291280 Primes p such that p does not divide any term of the Apery-like sequence A125143.

Original entry on oeis.org

2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97, 101, 103, 131, 137, 139, 149, 157, 163, 167, 173, 179, 181, 193, 197, 199, 211, 223, 227, 229, 233, 241, 251, 257, 263, 269, 281, 283, 293, 317, 331, 347, 349, 359, 367, 373, 379, 383
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291281 Primes p such that p does not divide any term of the Apery-like sequence A229111.

Original entry on oeis.org

2, 3, 17, 19, 23, 31, 47, 53, 61, 107, 109, 113, 137, 139, 151, 173, 197, 199, 211, 227, 229, 233, 241, 257, 263, 293, 317, 347, 353, 383, 421, 439, 443, 467, 499, 541, 587, 593, 619, 647, 661, 677, 683, 691, 751, 769, 773, 857, 919
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291282 Primes p such that p does not divide any term of the Apery-like sequence A002895.

Original entry on oeis.org

3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89, 101, 103, 107, 109, 127, 131, 137, 163, 167, 173, 181, 191, 193, 199, 229, 233, 239, 241, 251, 257, 269, 307, 311, 317, 337, 347, 349, 359, 367, 373, 409, 419, 421, 449, 457
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291283 Primes p such that p does not divide any term of the Apery-like sequence A290575.

Original entry on oeis.org

3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89, 101, 103, 107, 109, 113, 127, 131, 139, 149, 157, 167, 179, 191, 193, 197, 223, 227, 229, 241, 251, 257, 271, 281, 293, 307, 311, 313, 353, 367, 373, 379, 389, 401, 419, 431, 433
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A294454 a(n) = n! * [x^n] exp(2*n*x)*BesselI(0,2*x)^n.

Original entry on oeis.org

1, 2, 20, 324, 7336, 213500, 7593744, 319195800, 15481238224, 850968357228, 52279073479120, 3549850939488392, 263999303861731200, 21340730504572110008, 1863120652816098506432, 174706136370865217610000, 17512175948995988236164000, 1868638289932305589084614220, 211478046685658614366937497296
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2017

Keywords

Comments

The n-th term of the n-fold exponential convolution of A000984 with themselves.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[2 n x] BesselI[0, 2 x]^n, {x, 0, n}], {n, 0, 18}]

Formula

a(n) ~ c * d^n * n! / sqrt(n), where d = 6.46710510392662827829435747085578126903789467159876086... and c = 0.36028050364743885143298970162021762094091934461095... - Vaclav Kotesovec, May 04 2024

A327834 Expansion of 1 / AGM(1, 1 - 8*x)^2 in powers of x.

Original entry on oeis.org

1, 8, 56, 384, 2648, 18496, 131008, 940032, 6821848, 49985984, 369258560, 2746629120, 20549693888, 154518118912, 1166873394688, 8844937101312, 67265481552856, 513038965707968, 3923108472072512, 30068733313938432, 230943237733355840, 1777114026405752320
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 27 2019

Keywords

Comments

AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2*EllipticK[1/(1 - 1/(4*x))^2]/(Pi*(1 - 4*x)))^2, {x, 0, 25}], x]
    CoefficientList[Series[Hypergeometric2F1[1/2, 1/2, 1, 16*x*(1 - 4*x)]^2, {x, 0, 25}], x]

Formula

Recurrence: n^3*a(n) = 4*(2*n - 1)*(3*n^2 - 3*n + 2)*a(n-1) - 16*(n-1)*(13*n^2 - 26*n + 20)*a(n-2) + 128*(2*n - 3)*(3*n^2 - 9*n + 8)*a(n-3) - 1024*(n-2)^3*a(n-4).
a(n) ~ 2^(3*n + 3) * (log(4*n) + gamma) / (Pi^2 * n), where gamma is the Euler-Mascheroni constant A001620.
Previous Showing 51-56 of 56 results.