cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A382417 Numbers with at least one zero in their base-8 representation.

Original entry on oeis.org

0, 8, 16, 24, 32, 40, 48, 56, 64, 65, 66, 67, 68, 69, 70, 71, 72, 80, 88, 96, 104, 112, 120, 128, 129, 130, 131, 132, 133, 134, 135, 136, 144, 152, 160, 168, 176, 184, 192, 193, 194, 195, 196, 197, 198, 199, 200, 208, 216, 224, 232, 240, 248, 256, 257, 258, 259, 260
Offset: 1

Views

Author

Paolo Xausa, Mar 25 2025

Keywords

Crossrefs

Cf. analogous sequences in other bases: A062289 (base 2), A081605 (base 3), A196032 (base 4), A382415 (base 5), A382416 (base 6), A382413 (base 7), A382418 (base 9), A011540 (base 10).
Cf. A007094, A043421, A255805 (complement).

Programs

  • Mathematica
    Select[Range[0, 300], DigitCount[#, 8, 0] > 0 &]

A382418 Numbers with at least one zero in their base-9 representation.

Original entry on oeis.org

0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 108, 117, 126, 135, 144, 153, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 180, 189, 198, 207, 216, 225, 234, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 261, 270, 279, 288, 297
Offset: 1

Views

Author

Paolo Xausa, Mar 25 2025

Keywords

Crossrefs

Cf. analogous sequences in other bases: A062289 (base 2), A081605 (base 3), A196032 (base 4), A382415 (base 5), A382416 (base 6), A382413 (base 7), A382417 (base 8), A011540 (base 10).
Cf. A007095, A043453, A255808 (complement).

Programs

  • Mathematica
    Select[Range[0, 300], DigitCount[#, 9, 0] > 0 &]

A259566 Numbers following gaps in the sequence of base-3 numbers that don't contain 0.

Original entry on oeis.org

1, 4, 7, 13, 16, 22, 25, 40, 43, 49, 52, 67, 70, 76, 79, 121, 124, 130, 133, 148, 151, 157, 160, 202, 205, 211, 214, 229, 232, 238, 241, 364, 367, 373, 376, 391, 394, 400, 403, 445, 448, 454, 457, 472, 475, 481, 484, 607, 610, 616, 619, 634, 637, 643, 646, 688, 691, 697, 700, 715, 718, 724, 727, 1093, 1096, 1102, 1105, 1120
Offset: 1

Views

Author

Sean Oneil, Jun 30 2015

Keywords

Comments

Partial sums for the convergent modified harmonic series in base 3 excluding 0 = Sum of 1/a(n) + 1/(a(n) + 1) = Sum of (2*a(n) + 1)/(a(n)*(a(n) + 1)).

Examples

			Pattern of numbers of skipped terms (numbers in base 3 with at least one zero) is 1 (3 = 10_3), 1 (6 = 20_3), 3+1 (9 = 100_3, 10 = 101_3, 11 = 102_3, 12 = 110_3), 1, 3+1, 1, 9+3+1, 1, 3+1, 1, 9+3+1, 1, 3+1, 1, 27+9+3+1, ...
		

Crossrefs

Cf. A032924.
Subset of A016777 (congruent to 1 mod 3).
Each term is one more than each number that follows a gap in A081605.

Programs

  • PARI
    lista(nn)=prec0 = 1; for(n=1, nn, if (vecmin(digits(n, 3)), if (prec0, print1(n,, ", ")); prec0 = 0, prec0 = 1);); \\ Michel Marcus, Aug 03 2015
    
  • Python
    def A259566(n): return int(bin(m:=n)[3:],3)*3 + (3**m.bit_length()-1>>1) if n>1 else 1 # Chai Wah Wu, Oct 13 2023

Formula

a(n) = A032924(2n - 1).

A371222 Product of digits of (n written in base 3) mod 3.

Original entry on oeis.org

0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 18 2024

Keywords

Comments

a(A032924(n)) = 1 or 2. For n >= 1, a(A032924(n)) - 1 = A309953(A032924(n)) mod 3 - 1 = A010059(n+1).

Examples

			n = 5: 5_10 = 12_3 thus a(5) = 1*2 mod 3 = 2.
n = 8: 8_10 = 22_3 thus a(8) = 2*2 mod 3 = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[Times @@ IntegerDigits[n, 3], 3]; Array[a, 100, 0] (* Amiram Eldar, Mar 18 2024 *)
  • Python
    from functools import reduce
    from sympy.ntheory import digits
    def A371222(n): return reduce(lambda a,b: a*b%3,digits(n,3)[1:],1) # Chai Wah Wu, Mar 19 2024

Formula

a(n) = A309953(n) mod 3.
a(A081605(n)) = 0.
Previous Showing 11-14 of 14 results.