Original entry on oeis.org
1, 6, 17, 35, 68, 122, 224, 383, 656, 1092, 1841, 2978, 4859, 7835, 12776, 20291, 32664, 51422, 82485, 129720, 204821, 319482, 506060, 789872, 1237733, 1927494, 3024318, 4687259, 7274921, 11271293, 17578760, 27133793, 42125475, 64909160
Offset: 0
A345253
Maximal Fibonacci tree: Arrangement of the positive integers as labels of a complete binary tree.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 13, 11, 14, 16, 21, 12, 15, 17, 22, 18, 23, 26, 34, 19, 24, 27, 35, 29, 37, 42, 55, 20, 25, 28, 36, 30, 38, 43, 56, 31, 39, 44, 57, 47, 60, 68, 89, 32, 40, 45, 58, 48, 61, 69, 90, 50, 63, 71, 92, 76, 97, 110, 144, 33, 41, 46, 59, 49
Offset: 1
As a complete binary tree:
1
/ \
2 3
/ \ / \
4 5 6 8
/ \ / \ / \ / \
7 9 10 13 11 14 16 21
/ \ / \ / \ / \ / \ / \ / \ / \
...
By maximal Fibonacci expansion:
F(1)
/ \
F(1) + F(2) F(1) + F(3)
/ \ / \
F(1) + F(2) + F(3) F(1) + F(2) + F(4) F(1) + F(3) + F(4) F(1) + F(3) + F(5)
...
"Fibonacci gaps," or differences between successive indices in maximal Fibonacci expansion above, are A007931(n-1) for n > 1 (see link):
*
/ \
1 2
/ \ / \
11 12 21 22
/ \ / \ / \ / \
111 112 121 122 211 212 221 222
/ \ / \ / \ / \ / \ / \ / \ / \
...
In examples of the three methods below:
Branch left-right-right down the tree to arrive at nodal position n = 2*(2*(2*1) + 1) + 1 = 11;
Branch right-left-left down the tree to arrive at nodal position n = 2*(2*(2*1 + 1)) = 12.
Tree by inner composition of (one plus) the lower and upper Wythoff sequences, A000201 and A001950 (Method 1):
a(11) = A000201(A001950(A001950(1) + 1) + 1) + 1 = 13.
a(12) = A001950(A000201(A000201(1) + 1) + 1) + 1 = 11.
Tree by (outer) composition of branching functions L(n) = n + F(Finv(n)) and R(n) = n + F(Finv(n) + 1), where F(n) = A000045(n) and Finv(n) = A130233(n) (Method 2):
a(11) = R(R(L(1))) = 13.
a(12) = L(R(R(1))) = 11.
Tree by outer composition of A060143 and A060144 (Wythoff inverse sequences) (Method 3):
a(11) = 13, position of first nonzero in A060144(A060144(A060143(m))) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ..., for m = 1, 2, 3, ....
a(12) = 11, position of first nonzero in A060143(A060143(A060144(m))) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ..., for m = 1, 2, 3, ....
Cf.
A000045,
A000201,
A001950,
A007931,
A020988,
A020989,
A026351,
A026352,
A029837,
A048680,
A049651,
A059893,
A061547,
A070939,
A081242,
A083047,
A095903,
A099919,
A112310,
A113473,
A130233,
A200648,
A232560,
A243571,
A255773,
A255774,
A329395,
A343152,
A345252,
A345254.
-
(* For binary tree implementations, see supporting file under LINKS *)
a[n_] := (x = 0; y = 0; BDn = Reverse[IntegerDigits[n, 2]]; imax = Length[BDn] - 1; For[i = 0, i <= imax, i++, {x, y} = {y + 1, x + y}; If[BDn[[i + 1]] == 1, {x, y} = {y, x + y}]]; y);
(* Adapted from PARI code of Kevin Ryde *)
-
a(n) = my(x=0,y=0); for(i=0,logint(n,2), [x,y]=[y+1,x+y]; if(bittest(n,i), [x,y]=[y,x+y])); y; \\ Kevin Ryde, Jun 19 2021
A083046
Antidiagonal sums of table A083044.
Original entry on oeis.org
1, 6, 16, 35, 67, 118, 197, 319, 506, 789, 1215, 1860, 2830, 4290, 6481, 9771, 14708, 22120, 33239, 49921, 74946, 112490, 168807, 253286, 380008, 570095, 855228, 1282931, 1924490, 2886828, 4330341, 6495613, 9743524, 14615392, 21923196
Offset: 0
Original entry on oeis.org
1, 6, 15, 33, 60, 107, 176, 283, 463, 732, 1156, 1773, 2702, 4170, 6333, 9611, 14365, 21842, 32281, 48041, 71690, 106136, 158196, 232380, 340846, 504318, 740949, 1089909, 1590748, 2348540, 3411262, 4978297, 7278002, 10600284, 15494846
Offset: 0
A083053
Antidiagonal sums of table A083050.
Original entry on oeis.org
1, 6, 16, 35, 66, 114, 185, 290, 443, 661, 976, 1425, 2064, 2972, 4259, 6083, 8667, 12327, 17506, 24834, 35203, 49869, 70615, 99959, 141462, 200159, 283173, 400577, 566616, 801435, 1133522, 1603168, 2267350, 3206653, 4535033, 6413648, 9070416
Offset: 0
A345252
2-1-Fibonacci cohort array, a rectangular array T(n,k) read by downward antidiagonals.
Original entry on oeis.org
1, 2, 3, 4, 6, 5, 7, 11, 10, 8, 12, 19, 18, 16, 9, 20, 32, 31, 29, 17, 13, 33, 53, 52, 50, 30, 26, 14, 54, 87, 86, 84, 51, 47, 27, 15, 88, 142, 141, 139, 85, 81, 48, 28, 21, 143, 231, 230, 228, 140, 136, 82, 49, 42, 22, 232, 375, 374, 372, 229, 225, 137, 83, 76
Offset: 1
Northwest corner of {T(n,k)}:
k=1 k=2 k=3 k=4 k=5 k=6 ...
n=0: 1, 2, 4, 7, 12, 20, ...
n=1: 3, 6, 11, 19, 32, 53, ...
n=2: 5, 10, 18, 31, 52, 86, ...
n=3: 8, 16, 29, 50, 84, 139, ...
n=4: 9, 17, 30, 51, 85, 140, ...
...
Northwest corner of {T(n,k)} in maximal Fibonacci expansion (see link):
k=1 k=2 k=3 ...
n=0: F(1), F(1)+F(2), F(1)+F(2)+F(3), ...
n=1: F(1)+F(3), F(1)+F(3)+F(4), F(1)+F(3)+F(4)+F(5), ...
n=2: F(1)+F(2)+F(4), F(1)+F(2)+F(4)+F(5), F(1)+F(2)+F(4)+F(5)+F(6), ...
...
Northwest corner of {T(n,k)} as "Fibonacci gaps," or differences between successive indices in maximal Fibonacci expansion above, (see link):
k=1 k=2 k=3 k=4 k=5 k=6 ...
n=0: *, 1, 11, 111, 1111, 11111, ...
n=1: 2, 21, 211, 2111, 21111, 211111, ...
n=2: 12, 121, 1211, 12111, 121111, 1211111, ...
n=3: 22, 221, 2211, 22111, 221111, 2211111, ...
n=4: 122, 1221, 12211, 122111, 1221111, 12211111, ...
...
Cf.
A000027,
A000045,
A000071,
A000201,
A001950,
A035513,
A059893,
A083047,
A130233,
A132817,
A191436,
A194030,
A232560,
A345253,
A345254.
-
(* Define A000045 *)
F[n_] := Fibonacci[n]
(* Defined A130233 *)
Finv[n_] := Floor[Log[GoldenRatio, Sqrt[5]n + 1]]
(* Simplified Formula *)
MatrixForm[Table[n + F[Finv[n] + k + 2] - F[Finv[n] + 2], {n, 0, 4}, {k, 1, 6}]]
(* Branching Formula *)
MatrixForm[Table[NestList[Function[# + F[Finv[#]]], n + F[Finv[n] + 1], 5], {n, 0, 4}]]
Original entry on oeis.org
1, 5, 25, 90, 247, 766, 2258, 5860, 16526, 45639, 124043, 313327, 837221, 2216256, 5545541, 14524810, 37810204, 97907017, 242993558, 625252309, 1602714963, 3962518559, 10109705767, 25718726896, 63402237401, 160711911464
Offset: 0
A083091
Antidiagonal sums of table A083087.
Original entry on oeis.org
1, 5, 17, 49, 128, 321, 790, 1924, 4664, 11282, 27262, 65843, 158988, 383863, 926761, 2237435, 5401685, 13040863, 31483472, 76007871, 183499282, 443006506, 1069512368, 2582031320, 6233575089, 15049181582, 36331938341, 87713058356
Offset: 0
Comments