cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A360729 a(n) is the number of prime factors of the n-th powerful number (counted with repetition).

Original entry on oeis.org

0, 2, 3, 2, 4, 2, 3, 5, 4, 2, 6, 5, 4, 4, 5, 2, 3, 7, 6, 2, 4, 5, 6, 4, 5, 8, 7, 2, 6, 3, 2, 5, 6, 7, 4, 4, 5, 9, 2, 8, 4, 7, 5, 4, 6, 6, 7, 2, 8, 6, 2, 5, 7, 6, 10, 4, 5, 9, 4, 4, 8, 5, 3, 5, 2, 5, 4, 4, 7, 8, 2, 9, 6, 7, 2, 6, 8, 7, 6, 11, 4, 7, 3, 2, 10, 5
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Crossrefs

Similar sequences: A072047, A076399.

Programs

  • Mathematica
    PrimeOmega[Select[Range[3000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]]
  • PARI
    apply(bigomega, select(ispowerful, [1..3000]))

Formula

a(n) = A001222(A001694(n)).
Sum_{A001694(k) < x} a(k) = (2*zeta(3/2)/zeta(3))*sqrt(x)*log(log(x)) + (2*(B_2 - log(2)) + Sum_{p prime} (3/((p^(3/2)+1))))*(zeta(3/2)/zeta(3))*sqrt(x) + O(sqrt(x)/sqrt(log(x))), where B_2 = A083342 (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]

A091589 Decimal expansion of the analog of the Mertens constant B_2 in the asymptotic series for the variance of the number of prime factors Omega.

Original entry on oeis.org

7, 6, 4, 7, 8, 4, 8, 0, 9, 7, 9, 7, 8, 4, 6, 7, 6, 3, 0, 6, 4, 6, 3, 2, 2, 6, 2, 3, 4, 1, 0, 5, 2, 7, 6, 4, 6, 3, 0, 9, 5, 8, 0, 4, 3, 3, 1, 2, 9, 0, 4, 2, 7, 5, 4, 7, 6, 7, 0, 1, 3, 8, 7, 8, 0, 2, 8, 6, 1, 7, 8, 2, 1, 2, 4, 9, 5, 5, 9, 8, 9, 1, 4, 4, 2, 2, 0, 1, 4, 2, 0, 5, 4, 3, 9, 6, 8, 7, 8, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jan 22 2004

Keywords

Examples

			0.76478480...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 95.

Crossrefs

Cf. A001222, A013661 (Pi^2/6), A086242, A083342.

Formula

Equals A083342 minus Pi^2/6 plus A086242. - R. J. Mathar, Oct 14 2010
Equals lim_{m->oo} ((1/m) * Sum_{k=1..m} A001222(k)^2 - ((1/m) * Sum_{k=1..m} A001222(k))^2 - log(log(m))). - Amiram Eldar, Jan 09 2024

Extensions

More digits from R. J. Mathar, Oct 14 2010
More digits (using terms in A083342 and A086242) from Vaclav Kotesovec, Aug 12 2019

A363013 a(n) is the number of prime factors (counted with multiplicity) of the n-th cubefull number (A036966).

Original entry on oeis.org

0, 3, 4, 3, 5, 6, 4, 3, 7, 6, 5, 8, 3, 7, 9, 4, 7, 6, 8, 6, 10, 8, 3, 9, 8, 7, 11, 7, 3, 4, 9, 6, 5, 6, 10, 9, 8, 12, 3, 7, 10, 7, 9, 8, 3, 11, 10, 9, 13, 6, 8, 7, 11, 6, 8, 10, 3, 12, 4, 11, 6, 10, 14, 5, 7, 10, 6, 7, 9, 9, 12, 7, 9, 11, 3, 8, 9, 13, 7, 4, 3
Offset: 1

Views

Author

Amiram Eldar, May 13 2023

Keywords

Crossrefs

Similar sequences: A072047, A076399, A360729.

Programs

  • Mathematica
    PrimeOmega[Select[Range[10000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    iscubefull(n) = n==1 || vecmin(factor(n)[, 2]) > 2;
    apply(bigomega, select(iscubefull, [1..10000]))

Formula

a(n) = A001222(A036966(n)).
a(n) >= 3, for n > 1.
Sum_{A036966(k) < x} a(k) = 3*c*x^(1/3)*log(log(x)) + (3*(B_2 - log(2)) + Sum_{p prime} ((4*p^(1/3)+5)/(p^(5/3)+p^(1/3)+1)))*c*x^(1/3) + O(x^(1/3)/sqrt(log(x))), where B_2 = A083342 and c = A362974 (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]

A071811 a(n) = Sum_{k = 1..10^n} number of primes (counted with multiplicity) dividing k (A001222).

Original entry on oeis.org

0, 15, 239, 2877, 31985, 343614, 3626619, 37861249, 392351272, 4044220058, 41518796555, 424904645958, 4337589196099, 44189168275565, 449411845856902, 4564053529871328, 46294122513328879, 469075734968975581, 4748553675150670580, 47797839092868715542
Offset: 0

Views

Author

Rick L. Shepherd, Jun 07 2002

Keywords

Comments

Also bigomega( (10^n)! ), where bigomega(x): number of prime divisors of x, counted with multiplicity. - Cino Hilliard, Jul 04 2007

Examples

			a(1) = 15 because bigomega(1) + bigomega(2) + ... + bigomega(10) = 0+1+1+2+1+2+1+3+2+2 = 15.
		

Crossrefs

Cf. A001222 (bigomega), A022559, A064182 (corresponding sums for distinct primes), A083342.

Programs

  • Mathematica
    With[{s = Array[PrimeOmega, 10^6]}, {0}~Join~Array[Total@ Take[s, 10^#] &, Floor@ Log10@ Length@ s]] (* Michael De Vlieger, Dec 17 2017 *)
  • PARI
    s=0; n=0; for(k=1,10^8, s=s+bigomega(k); if(k==10^n,print1(s,","); n++))
    
  • PARI
    g(n) = for(x=0,n,print1(bigomega((10^x)!),",")) \\ Cino Hilliard, Jul 04 2007

Formula

From Amiram Eldar, Oct 11 2024: (Start)
a(n) = A022559(10^n).
a(n) ~ 10^n * (log(log(10^n)) + B_2), where B_2 = A083342. (End)

Extensions

a(9) from Charles R Greathouse IV, Dec 11 2008
a(11)-a(12) from Giovanni Resta, Oct 26 2012
a(13)-a(17) from Hiroaki Yamanouchi, Aug 28 2014
a(18)-a(19) from Henri Lifchitz, Dec 17 2017
Previous Showing 11-14 of 14 results.