A084929 If the numbers 1 to n^3 are arranged in a cubic array, a(n) is the minimum number of primes in each column of the n^2 columns in the "north-south view" that can have primes.
0, 1, 1, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 2, 1, 1, 0, 3, 0, 2, 1, 2, 0, 5, 0, 3, 0, 3, 0, 7, 0, 2, 1, 2, 0, 5, 0, 3, 2, 4, 0, 8, 0, 1, 2, 4, 0, 6, 0, 4, 2, 4, 0, 6, 1, 5, 2, 3, 1, 10, 0, 4, 4, 3, 1, 9, 0, 5, 3, 9, 0, 9, 1, 4, 3, 5, 2, 8, 1, 6, 2, 4, 1, 13, 2, 6, 3, 7, 1, 14, 2, 6, 3, 5, 2, 12, 1, 9, 4, 9
Offset: 1
Keywords
References
- See A083382 for references and links to the two-dimensional case.
Programs
-
Mathematica
Table[minP=n; Do[c=a+(b-1)n^2; If[GCD[c, n]==1, s=0; Do[If[PrimeQ[c+(r-1)*n], s++ ], {r, n}]; minP=Min[s, minP]], {a, n}, {b, n}]; minP, {n, 100}]
Comments