cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 77 results. Next

A288304 Primes of the form k!6+9, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 13, 233, 394249, 13404169, 24663654409, 311607296009, 1282510028809, 37455569511954513920009, 1717927167842495286476800009, 182100279791304500366540800009, 131285558488477016219820351299780608000009, 453537748960814664854433903259753397239152640000009
Offset: 1

Views

Author

Robert Price, Jun 07 2017

Keywords

Crossrefs

Cf. A288154.

Programs

  • Mathematica
    MultiFactorial[n_,k_]:=If[n<1,1,n*MultiFactorial[n-k,k]];
    Select[Table[MultiFactorial[i,6]+9, {i,0,100}], PrimeQ[#]&]

A288444 Numbers k such that k!6 + 16 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

1, 3, 7, 9, 11, 13, 15, 21, 23, 35, 37, 39, 47, 49, 59, 111, 117, 163, 287, 311, 601, 635, 855, 895, 2455, 2929, 3369, 7147, 10367, 12311, 13093, 13611, 14431, 17305, 27331
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 17, 19, 23, 43, 71, 107, 421, 8521, 21521, 21827591, 49579091, 295540261, 42061737041, 104463111041, ...
a(36) > 50000.
Terms > 49 correspond to probable primes.

Examples

			11!6 + 16 = 11*5 + 16 = 71 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 16] &]
    Select[Range[1000],PrimeQ[Times@@Range[#,1,-6]+16]&] (* The program generates the first 24 terms of the sequence. To generate more, increase the Range constant. *)

A288445 Numbers k such that k!6 + 18 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

1, 5, 11, 13, 17, 19, 23, 31, 37, 41, 49, 83, 115, 161, 205, 617, 683, 769, 799, 1117, 1151, 1685, 1697, 1951, 2173, 3619, 3647, 6229, 6463, 6613, 9827, 12985, 15721, 16933, 22579, 25181, 38869, 48755
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 19, 23, 73, 109, 953, 1747, 21523, 1339993, 49579093, 894930593, ...
a(39) > 50000.
Terms > 49 correspond to probable primes.

Examples

			11!6 + 18 = 11*5 + 18 = 73 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 18] &]

A288446 Numbers k such that k!6 + 24 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

5, 7, 11, 19, 23, 29, 53, 67, 71, 79, 109, 121, 275, 707, 725, 1345, 1961, 2221, 2477, 2765, 5557, 5779, 7423, 11587, 22495, 25063, 28795, 43783
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 29, 31, 79, 1753, 21529, 623669, 2229272062349, ...
a(29) > 50000.
Terms > 29 correspond to probable primes.

Examples

			11!6 + 24 = 11*5 + 24 = 79 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 24] &]

A288447 Numbers k such that k!6 + 27 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

2, 4, 8, 10, 14, 20, 22, 26, 32, 40, 110, 116, 142, 148, 200, 370, 854, 1166, 1594, 2164, 4424, 5942, 9086, 13300, 15224, 20482, 22940, 27478, 47486
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 29, 31, 43, 67, 251, 4507, 14107, 116507, 3727387, 536166427, ...
a(30) > 50000.
Terms > 40 correspond to probable primes.

Examples

			10!6 + 27 = 10*4 + 27 = 67 is prime, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 27] &]
    Select[Range[48000],PrimeQ[Times@@Range[#,1,-6]+27]&] (* Harvey P. Dale, Aug 10 2021 *)

A288448 Numbers k such that k!6 + 32 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

5, 9, 17, 21, 29, 53, 57, 105, 111, 279, 303, 435, 483, 677, 1049, 1217, 1395, 9651, 26031, 31937
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 37, 59, 967, 8537, 623677, 2229272062357, 38661097149707, ...
a(21) > 50000.
Terms > 29 correspond to probable primes.

Examples

			17!6 + 32 = 17*11*5 + 32 = 967 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 32] &]

A288449 Numbers k such that k!6 + 36 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

1, 5, 7, 13, 17, 25, 29, 31, 55, 77, 119, 311, 373, 587, 1037, 1057, 1645, 2279, 2327, 2531, 2893, 2917, 3293, 3799, 9139, 14131, 14405, 15041, 24923, 26563, 48743
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 37, 41, 43, 127, 971, 43261, 623681, 1340011, 5745471106411, ...
a(32) > 50000.
Terms > 31 correspond to probable primes.

Examples

			13!6 + 36 = 13*7*1 + 36 = 127 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 36] &]

A288450 Numbers k such that k!6 + 48 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

5, 11, 13, 17, 19, 35, 43, 49, 67, 71, 73, 85, 103, 263, 293, 497, 529, 599, 905, 971, 1685, 2927, 3635, 3847, 4535, 8501, 38777
Offset: 1

Views

Author

Robert Price, Jun 09 2017

Keywords

Comments

Corresponding primes are: 53, 103, 139, 983, 1777, 21827623, 2131900273, 104463111073, ...
a(28) > 50000.
Terms > 49 correspond to probable primes.

Examples

			11!6 + 48 = 11*5 + 48 = 103 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 48] &]

A288608 Primes of the form k!6+3, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

5, 7, 19, 43, 227, 643, 4483, 14083, 116483, 13404163, 333247405883392003, 75494329921353417731638961852391076220895232000003, 607641057683281452422878601758017247375890833361248739064460794062744301780319012095222746705407815771488256000000000000003
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A287844.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 3, {i, 0, 100}], PrimeQ[#]&]

A288609 Primes of the form k!6+4, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

5, 7, 11, 31, 59, 409, 1733, 229639, 21827579, 131527051677179, 606997343490162629, 12604484198222791879, 32799650788086796039050629, 1140711996797519078728387466879, 7575339494576348459668940121110928768987796879
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A287914.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 4, {i, 0, 100}], PrimeQ[#]&]
Previous Showing 11-20 of 77 results. Next