cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 77 results. Next

A288610 Primes of the form k!6+6, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

7, 11, 13, 61, 97, 941, 49579081, 2131900231, 5745471106381, 354465826066854004794020104381, 37267424634284447239051884908224251090631, 227836844933692950264766019866879913915703131, 128107331191722301650949440150294486487789796881
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A287956.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 6, {i, 0, 100}], PrimeQ[#]&]

A288611 Primes of the form k!6+8, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 13, 8513, 623653, 894930583, 8549258359016383, 235688987204434958925489124744024850191208400552711361516202496964312102763671883, 3455904336175896542411549854057588080710499447187965811860796717973635798288665212915137252930364990234383
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A288152.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 8, {i, 0, 100}], PrimeQ[#]&]

A288612 Primes of the form k!6+12, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

13, 17, 19, 67, 103, 947, 1741, 21517, 43237, 894930587, 23481740411754637, 606997343490162637, 3312764729596766399944113137, 1140711996797519078728387466887, 815970262367657972299041020065569977629234387, 20881494984250735169104758744498001297509736890637
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A288155.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 12, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-6]+12,{n,200}],PrimeQ] (* Harvey P. Dale, Aug 19 2022 *)

A288613 Primes of the form k!6+16, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

17, 19, 23, 43, 71, 107, 421, 8521, 21521, 21827591, 49579091, 295540261, 42061737041, 104463111041, 131527051677191, 9531467484069295223586105103141, 1115181695636107541159574297065641, 20881494984250735169104758744498001297509736890641
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A288444.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 16, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-6]+16,{n,200}],PrimeQ] (* Harvey P. Dale, Sep 26 2023 *)

A288614 Primes of the form k!6+18, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

19, 23, 73, 109, 953, 1747, 21523, 1339993, 49579093, 894930593, 104463111043, 3879320022245629336393, 131181879631714694053764558690643, 5685668465320307573857236025777988251766371484393, 164577616892349380880997566903814398769391101461559752758998046893
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A288445.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 18, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[(Times@@Range[k,1,-6])+18,{k,250}],PrimeQ] (* Harvey P. Dale, Dec 14 2021 *)

A288615 Primes of the form k!6+24, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

29, 31, 79, 1753, 21529, 623669, 2229272062349, 23481740411754649, 606997343490162649, 135419196954588922399, 1140711996797519078728387466899, 15873007435437477980505511601565649
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 24, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[24+Times@@Range[n,1,-6],{n,0,200}],PrimeQ] (* Harvey P. Dale, Jan 14 2022 *)

A288616 Primes of the form k!6+27, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

29, 31, 43, 67, 251, 4507, 14107, 116507, 3727387, 536166427, 3863281304394304907431116800027, 448140631309739369262009548800027, 749208909436911824731413869422968832000027, 110882918596662950060249252674599387136000027
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A288447.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 27, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-6]+27,{n,200}],PrimeQ] (* Harvey P. Dale, Apr 12 2022 *)

A288617 Primes of the form k!6+32, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

37, 59, 967, 8537, 623677, 2229272062357, 38661097149707, 85869076433056713726000946907, 9531467484069295223586105103157, 79432354647061073112183103536868912864021331942535479440624079759179748913587442580929345703157
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 32, {i, 0, 100}], PrimeQ[#]&]

A288618 Primes of the form k!6+36, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

37, 41, 43, 127, 971, 43261, 623681, 1340011, 5745471106411, 46738795448742522161, 4766501963120985802465188343530661, 1074786248550703824689992004611909893100965328075457367488707779289800733267774881216607685661343511962890661
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A288449.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 36, {i, 0, 100}], PrimeQ[#]&]

A288619 Primes of the form k!6+48, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

53, 103, 139, 983, 1777, 21827623, 2131900273, 104463111073, 23481740411754673, 606997343490162673, 1714167050058087673, 11510631741140058401923, 10465247677041459437875114423
Offset: 1

Views

Author

Robert Price, Jun 11 2017

Keywords

Crossrefs

Cf. A288450.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 6] + 48, {i, 0, 100}], PrimeQ[#]&]
    Select[(Table[Times@@Range[n,1,-6],{n,200}]+48),PrimeQ] (* Harvey P. Dale, Oct 02 2020 *)
Previous Showing 21-30 of 77 results. Next