A288610
Primes of the form k!6+6, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
7, 11, 13, 61, 97, 941, 49579081, 2131900231, 5745471106381, 354465826066854004794020104381, 37267424634284447239051884908224251090631, 227836844933692950264766019866879913915703131, 128107331191722301650949440150294486487789796881
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 6, {i, 0, 100}], PrimeQ[#]&]
A288611
Primes of the form k!6+8, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
11, 13, 8513, 623653, 894930583, 8549258359016383, 235688987204434958925489124744024850191208400552711361516202496964312102763671883, 3455904336175896542411549854057588080710499447187965811860796717973635798288665212915137252930364990234383
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 8, {i, 0, 100}], PrimeQ[#]&]
A288612
Primes of the form k!6+12, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
13, 17, 19, 67, 103, 947, 1741, 21517, 43237, 894930587, 23481740411754637, 606997343490162637, 3312764729596766399944113137, 1140711996797519078728387466887, 815970262367657972299041020065569977629234387, 20881494984250735169104758744498001297509736890637
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 12, {i, 0, 100}], PrimeQ[#]&]
Select[Table[Times@@Range[n,1,-6]+12,{n,200}],PrimeQ] (* Harvey P. Dale, Aug 19 2022 *)
A288613
Primes of the form k!6+16, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
17, 19, 23, 43, 71, 107, 421, 8521, 21521, 21827591, 49579091, 295540261, 42061737041, 104463111041, 131527051677191, 9531467484069295223586105103141, 1115181695636107541159574297065641, 20881494984250735169104758744498001297509736890641
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 16, {i, 0, 100}], PrimeQ[#]&]
Select[Table[Times@@Range[n,1,-6]+16,{n,200}],PrimeQ] (* Harvey P. Dale, Sep 26 2023 *)
A288614
Primes of the form k!6+18, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
19, 23, 73, 109, 953, 1747, 21523, 1339993, 49579093, 894930593, 104463111043, 3879320022245629336393, 131181879631714694053764558690643, 5685668465320307573857236025777988251766371484393, 164577616892349380880997566903814398769391101461559752758998046893
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 18, {i, 0, 100}], PrimeQ[#]&]
Select[Table[(Times@@Range[k,1,-6])+18,{k,250}],PrimeQ] (* Harvey P. Dale, Dec 14 2021 *)
A288615
Primes of the form k!6+24, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
29, 31, 79, 1753, 21529, 623669, 2229272062349, 23481740411754649, 606997343490162649, 135419196954588922399, 1140711996797519078728387466899, 15873007435437477980505511601565649
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 24, {i, 0, 100}], PrimeQ[#]&]
Select[Table[24+Times@@Range[n,1,-6],{n,0,200}],PrimeQ] (* Harvey P. Dale, Jan 14 2022 *)
A288616
Primes of the form k!6+27, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
29, 31, 43, 67, 251, 4507, 14107, 116507, 3727387, 536166427, 3863281304394304907431116800027, 448140631309739369262009548800027, 749208909436911824731413869422968832000027, 110882918596662950060249252674599387136000027
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 27, {i, 0, 100}], PrimeQ[#]&]
Select[Table[Times@@Range[n,1,-6]+27,{n,200}],PrimeQ] (* Harvey P. Dale, Apr 12 2022 *)
A288617
Primes of the form k!6+32, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
37, 59, 967, 8537, 623677, 2229272062357, 38661097149707, 85869076433056713726000946907, 9531467484069295223586105103157, 79432354647061073112183103536868912864021331942535479440624079759179748913587442580929345703157
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 32, {i, 0, 100}], PrimeQ[#]&]
A288618
Primes of the form k!6+36, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
37, 41, 43, 127, 971, 43261, 623681, 1340011, 5745471106411, 46738795448742522161, 4766501963120985802465188343530661, 1074786248550703824689992004611909893100965328075457367488707779289800733267774881216607685661343511962890661
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 36, {i, 0, 100}], PrimeQ[#]&]
A288619
Primes of the form k!6+48, where k!6 is the sextuple factorial number (A085158).
Original entry on oeis.org
53, 103, 139, 983, 1777, 21827623, 2131900273, 104463111073, 23481740411754673, 606997343490162673, 1714167050058087673, 11510631741140058401923, 10465247677041459437875114423
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 6] + 48, {i, 0, 100}], PrimeQ[#]&]
Select[(Table[Times@@Range[n,1,-6],{n,200}]+48),PrimeQ] (* Harvey P. Dale, Oct 02 2020 *)