cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A085590 Maximal cycle lengths in a certain class of one-dimensional cellular automata.

Original entry on oeis.org

1, 2, 8, 6, 26, 8, 1, 8, 121, 6, 13, 26, 24, 80, 6560, 18, 19682, 40, 78, 242, 88573, 24, 59048, 26, 1, 26, 4782968, 24, 14348906, 6560, 363, 6560, 265720, 18, 19682, 19682, 39, 40, 80, 78, 10460353202, 14762, 72, 177146, 47071589413, 240, 10460353202, 59048, 19680, 364
Offset: 3

Views

Author

N. J. A. Sloane, Jul 03 2003

Keywords

References

  • O. Martin, A. M. Odlyzko and S. Wolfram, Algebraic properties of cellular automata, Comm Math. Physics, 93 (1984), pp. 219-258, Reprinted in Theory and Applications of Cellular Automata, S Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113 See Table 1.

Crossrefs

Extensions

More terms from Sean A. Irvine, Jun 15 2018

A085591 Maximal cycle lengths in a certain class of one-dimensional cellular automata.

Original entry on oeis.org

3, 2, 4, 3, 13, 8, 9, 8, 121, 6, 13, 13, 12, 80, 820, 9, 9841, 40, 39, 242, 88573, 24, 29524, 26, 27, 26, 2391484, 24, 551881, 6560, 363, 6560, 132860, 18, 9841, 9841, 39, 40
Offset: 3

Views

Author

N. J. A. Sloane, Jul 03 2003

Keywords

References

  • O. Martin, A. M. Odlyzko and S. Wolfram, Algebraic properties of cellular automata, Comm Math. Physics, 93 (1984), pp. 219-258, Reprinted in Theory and Applications of Cellular Automata, S Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113 See Table 1.

Crossrefs

A085592 Maximal cycle lengths in a certain class of one-dimensional cellular automata.

Original entry on oeis.org

2, 1, 6, 2, 14, 1, 14, 6, 62, 4, 126, 14, 30, 1, 30, 14, 1022, 12, 126, 62, 4094, 8, 2046, 126, 1022, 28, 32766, 30, 62, 1, 62, 30, 8190, 28, 174762, 1022, 8190, 24
Offset: 3

Views

Author

N. J. A. Sloane, Jul 03 2003

Keywords

References

  • O. Martin, A. M. Odlyzko and S. Wolfram, Algebraic properties of cellular automata, Comm Math. Physics, 93 (1984), pp. 219-258, Reprinted in Theory and Applications of Cellular Automata, S Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113 See Table 1.

Crossrefs

A085596 Cycle lengths in a certain class of one-dimensional cellular automata.

Original entry on oeis.org

6, 6, 15, 12, 9, 12, 42, 30, 93, 24, 63, 18, 510, 24, 255, 84, 513, 60, 1170, 186, 6141, 48, 3075, 126, 3066, 36, 9831, 1020
Offset: 3

Views

Author

N. J. A. Sloane, Jul 03 2003

Keywords

References

  • O. Martin, A. M. Odlyzko and S. Wolfram, Algebraic properties of cellular automata, Comm Math. Physics, 93 (1984), pp. 219-258, Reprinted in Theory and Applications of Cellular Automata, S Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113 See page 245.

Crossrefs

A334501 Eventual period of a single cell in rule 190 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 4, 5, 6, 7, 4, 9, 10, 11, 4, 13, 14, 15, 4, 17, 18, 19, 4, 21, 22, 23, 4, 25, 26, 27, 4, 29, 30, 31, 4, 33, 34, 35, 4, 37, 38, 39, 4, 41, 42, 43, 4, 45, 46, 47, 4, 49, 50, 51, 4, 53, 54, 55, 4, 57, 58, 59, 4, 61, 62, 63, 4, 65, 66, 67, 4, 69, 70
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(1 + x + x^2 + 4*x^3 + 3*x^4 + 4*x^5 + 5*x^6 - 4*x^7 - x^9 - 2*x^10) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>8.
(End)

Extensions

More terms from Bert Dobbelaere, May 09 2020
Previous Showing 11-15 of 15 results.