cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A227608 Denominators of A225825(n) difference table written by antidiagonals.

Original entry on oeis.org

1, 2, 2, 6, 3, 6, 2, 3, 3, 2, 30, 15, 15, 15, 30, 2, 15, 15, 15, 15, 2, 42, 21, 105, 105, 105, 21, 42, 2, 21, 21, 105, 105, 21, 21, 2, 30, 15, 105, 105, 105, 105, 105, 15, 30, 2, 15, 15, 105, 105, 105, 105, 15, 15, 2, 66, 33, 165, 165, 1155, 231, 1155, 165, 165, 33, 66, 2, 33, 33, 165, 165, 231, 231, 165, 165, 33, 33, 2
Offset: 0

Views

Author

Paul Curtz, Aug 10 2013

Keywords

Examples

			1,
-1/2,      1/2,
-1/6,     -2/3,     -1/6,
1/2,       1/3,     -1/3,     -1/2,
7/30,    11/15,    16/15,    11/15,     7/30,
-3/2,   -19/15,    -8/15,     8/15,    19/15,    3/2,
-31/42, -47/21, -368/105, -424/105, -368/105, -47/21, -31/42.
Row sums: 1, 0/2, -6/6, 0/6, 90/30, 0/30, -3570/210, 0/210, 32550/210,... .
Are the denominators A034386(n+1)?
Reduced row sums: 1, 0, -1, 0, 3, 0, -17, 0, 155,... = -A036968(n+1)? See A226158(n+2). First 100 terms checked by Jean-François Alcover.
		

Crossrefs

Programs

  • Mathematica
    max = 12; b[0] = 1; b[n_] := Numerator[ BernoulliB[n, 1/2] - (n+1)*EulerE[n, 0]]; t = Table[b[n], {n, 0, max}] / Table[ Sum[ Boole[ PrimeQ[d+1]]/(d+1), {d, Divisors[n]}] // Denominator, {n, 0, max}]; dt = Table[ Differences[t, n], {n, 0, max}]; Table[ dt[[n-k+1, k]] // Denominator, {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 12 2013 *)

Extensions

More terms from Jean-François Alcover, Aug 12 2013

A182397 Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.

Original entry on oeis.org

1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0

Views

Author

Paul Curtz, Apr 27 2012

Keywords

Comments

In A190339 we saw that (the second Bernoulli numbers) A164555/A027642 is an eigensequence (its inverse binomial transform is the sequence signed) of the second kind, see A192456/A191302. We consider this array preceded by 1 for the second row, by 1, -3/2, for the third one; 1 is chosen and is followed by the differences of successive rows.
Hence
1 1/2 1/6 0
1 -1/2 -1/3 -1/6 -1/30
1 -3/2 1/6 1/6 2/15 1/15
1 -5/2 5/3 0 -1/30 -1/15 -8/105.
The second row is A051716/A051717.
The (reduced) triangle before the square array (T(n,m) in A190339) is a(n)/b(n)=
B(0)= 1 = 1 Redbernou1li
B(1)= -1/2 = 1 -3/2
B(2)= 1/6 = 1 -5/2 5/3
B(3)= 0 = 1 -7/2 25/6 -5/3
B(4)=-1/30 = 1 -9/2 23/3 -35/6 49/30
B(5)= 0 = 1 -11/2 73/6 -27/2 112/15 -49/30.
For the main diagonal, see A165142.
Denominator b(n) will be submitted.
This transform is valuable for every eigensequence of the second kind. For instance Leibniz's 1/n (A003506).
With increasing exponents for coefficients, polynomials CB(n,x) create Redbernou1li. See the formula.
Triangle Bernou1li for A027641/A027642 with the same denominator A080326 for every column is
1
1 -3/2
1 -5/2 10/6
1 -7/2 25/6 -10/6
1 -9/2 46/6 -35/6 49/30
1 -11/2 73/6 -81/6 224/30 -49/30.
For numerator by columns,see A000012, -A144396, A100536, Q(n)=n*(2*n^2+9*n+9)/2 , new.
Triangle Checkbernou1 with the same denominator A080326 for every row is
1/1
(2 -3)/2
(6 -15 +10)/6
(6 -21 +25 -10)/6
(30 -135 +230 -175 +49)/30
(30 -165 +365 -405 +224 -49)/30;
Hence for numerator: 1, 2-3, 16-15, 31-31, 309-310, 619-619, 8171-8166.
Absolute sum: 1, 5, 31, 62, 619, 1238, 17337. Reduced division by A080326:
1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, = A172030(n+1)/A172031(n+1).

Crossrefs

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane), A051714/A051715 (Akiyama-Tanigawa), A192456/A191302 for other triangles that lead to the Bernoulli numbers.

Formula

CB(0,x) = 1,
CB(1,x) = 1 - 3*x/2,
CB(n,x) = (1-x)*CB(n-1,x) + B(n)*x^n , n > 1.

A244237 Numerators of the inverse binomial transform of (-1 followed by A164555(n+1)/A027642(n+1)).

Original entry on oeis.org

-1, 3, -11, 2, -61, 2, -83, 2, -61, 2, -127, 2, -6151, 2, -5, 2, -4637, 2, 42271, 2, -175241, 2, 854237, 2, -236369551, 2, 8553091, 2, -23749462769, 2, 8615841247361, 2, -7709321042237, 2, 2577687858355, 2, -26315271553057315753, 2
Offset: 0

Views

Author

Paul Curtz, Jun 23 2014

Keywords

Comments

See A244213. (The binomial transform of A198631(n)/A006519(n+1) is A143074(n)/A006519(n+1)).
Difference table of -1 followed by A164555(n+1)/A027642(n+1), see A190339:
-1, 1/2, 1/6, 0, -1/30, 0, 1/42, 0,...
3/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42,...
-11/6, 1/6, 2/15, 1/15, -1/105, -1/21,...
2, -1/30, -1/15, -8/105, -4/105,...
-61/30, -1/30, -1/105, 4/105,...
2, 1/42, 1/21,...
-83/42, 1/42,...
2,...
etc.
The corresponding denominators to a(n) are A027642(n). See A085738.
From the second Bernoulli numbers.

Crossrefs

Formula

(A164555(n+2) - a(n+2))/A027642(n+2) = (-1)^n*2.

Extensions

a(12)-a(37) from Jean-François Alcover

A254630 Ascending antidiagonal numerators of the table of repeated differences of A164558(n)/A027642(n).

Original entry on oeis.org

1, 1, 3, 1, 2, 13, 0, 1, 5, 3, -1, -1, 2, 29, 119, 0, -1, -1, 1, 31, 5, 1, 1, -1, -8, -1, 43, 253, 0, 1, 1, 4, -4, -1, 41, 7, -1, -1, -1, 4, 8, 4, -1, 29, 239, 0, -1, -1, -8, -4, 4, 8, 1, 31, 9, 5, 5, 7, -4, -116, -32, -116, -4, 7, 71, 665, 0
Offset: 0

Views

Author

Paul Curtz, Feb 03 2015

Keywords

Comments

The difference table of Bernoulli(n,2) or B(n,2) = A164558(n)/A027642(n) is defined by placing the fractions in the upper row and calculating further rows as the differences of their preceding row:
1, 3/2, 13/6, 3, 119/30, ...
1/2, 2/3, 5/6, 29/30, ...
1/6, 1/6, 2/15, ...
0, -1/30, ...
-1/30, ...
etc.
The first column is A164555(n)/A027642(n).
In particular, the sums of the antidiagonals
1 = 1
1/2 + 3/2 = 2
1/6 + 2/3 + 13/6 = 3
0 + 1/6 + 5/6 + 3 = 4
etc. are the positive natural numbers. (This is rewritten for Bernoulli(n,3) in A157809).
We also have for Bernoulli(.,2)
B(0,2) = 1
B(0,2) + 2*B(1,2) = 4
B(0,2) + 3*B(1,2) + 3*B(2,2) = 12
B(0,2) + 4*B(1,2) + 6*B(2,2) + 4*B(3,2) = 32
etc. with right hand sides provided by A001787.
More generally sum_{s=0..t-1} binomial(t,s)*Bernoulli(s,q) gives A027471(t) for q=3, A002697 for q=4 etc, by reading A104002 downwards the q-th column.

Crossrefs

Cf. A027641, A027642, A074909, A085737, A085738, A104002, A157809, A157920, A157930, A157945, A157946, A157965, A164555, A164558, A190339, A158302, A181131 (numerators and denominators of the main diagonal).

Programs

  • Mathematica
    nmax = 11; A164558 = Table[BernoulliB[n,2], {n, 0, nmax}]; D164558 = Table[ Differences[A164558, n], {n, 0, nmax}]; Table[ D164558[[n-k+1, k+1]] // Numerator, {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 04 2015 *)
Previous Showing 11-14 of 14 results.