cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A363540 Decimal expansion of Sum_{k>=1} (H(k)^3 - (log(k) + gamma)^3)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

5, 8, 2, 1, 7, 4, 0, 0, 8, 5, 0, 4, 8, 6, 4, 6, 5, 2, 8, 8, 9, 6, 8, 6, 8, 6, 1, 5, 5, 0, 2, 0, 4, 1, 3, 4, 3, 1, 5, 0, 3, 3, 3, 2, 4, 3, 1, 9, 5, 7, 7, 0, 1, 1, 4, 4, 2, 4, 0, 3, 9, 2, 7, 6, 4, 7, 6, 4, 1, 3, 9, 7, 2, 2, 5, 9, 8, 1, 8, 9, 7, 4, 9, 5, 1, 8, 9, 0, 4, 2, 8, 5, 7, 4, 3, 2, 3, 1, 9, 0, 9, 6, 5, 9, 7
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Examples

			5.82174008504864652889686861550204134315033324319577...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[3] - 3*EulerGamma*StieltjesGamma[2] - 3*EulerGamma^2*StieltjesGamma[1] - 3*EulerGamma^4/4 + 43*Zeta[4]/8, 10, 120][[1]]

Formula

Equals -gamma_3 - 3*gamma*gamma_2 - 3*gamma^2*gamma_1 - (3/4)*gamma^4 + (43/8)*zeta(4), where gamma_1, gamma_2 and gamma_3 are the 1st, 2nd and 3rd Stieltjes constants (A082633, A086279, A086280).

A385612 Decimal expansion zeta''''(0) (negated).

Original entry on oeis.org

2, 3, 9, 9, 7, 1, 0, 3, 1, 8, 8, 0, 1, 3, 7, 0, 7, 9, 5, 8, 9, 8, 7, 2, 1, 9, 5, 2, 7, 7, 4, 1, 0, 0, 5, 6, 6, 1, 8, 9, 1, 1, 3, 9, 9, 3, 4, 9, 2, 1, 7, 0, 3, 4, 2, 4, 9, 7, 6, 0, 0, 9, 3, 3, 3, 0, 4, 6, 3, 8, 2, 9, 3, 8, 6, 3, 3, 4, 4, 9, 9, 1, 3, 8, 2, 8, 6, 1, 8, 2, 2, 7, 5, 7, 8, 1, 3, 3, 4, 6, 9, 4, 9, 0, 3
Offset: 2

Views

Author

Artur Jasinski, Jul 04 2025

Keywords

Comments

n-th derivative of zeta function at 0 is close to -n!, which here is the present constant close to 4! = 24.

Examples

			23.997103188013707958987219527741...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta(4, 0), 120); # Vaclav Kotesovec, Jul 04 2025
  • Mathematica
    RealDigits[-3 EulerGamma^4/2 - EulerGamma^2 Pi^2/4 + 19 Pi^4/480 - 4 EulerGamma^3 Log[2 Pi] - 3 EulerGamma^2 Log[2Pi]^2 +  Pi^2 Log[2 Pi]^2/4 + Log[2 Pi]^4/2 - 6 EulerGamma^2 StieltjesGamma[1] - Pi^2 StieltjesGamma[1]/2 - 12 EulerGamma Log[2 Pi] StieltjesGamma[1] - 6 Log[2 Pi]^2 StieltjesGamma[1] - 6 EulerGamma StieltjesGamma[2] - 6 Log[2Pi] StieltjesGamma[2] - 2 StieltjesGamma[3] + 4 Log[2 Pi] Zeta[3],10,105][[1]]
  • PARI
    -zeta''''(0)

Formula

Equals -3*gamma^4/2 - gamma^2*Pi^2/4 + 19*Pi^4/480 - 4*gamma^3*log(2*Pi) -3*gamma^2*log(2*Pi)^2 + Pi^2*log(2*Pi)^2/4 + log(2*Pi)^4/2 - 6*gamma^2*StieltjesGamma(1) - Pi^2*StieltjesGamma(1)/2 - 12*gamma*log(2*Pi)* StieltjesGamma(1) - 6*log(2*Pi)^2*StieltjesGamma(1) - 6*gamma*StieltjesGamma(2) - 6*log(2*Pi)*StieltjesGamma(2) - 2*StieltjesGamma(3) + 4*log(2*Pi)*zeta(3).
Previous Showing 21-22 of 22 results.