cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A130443 Even pseudoprimes to base 43.

Original entry on oeis.org

6, 14, 42, 526974, 9157582, 21001206, 49419154, 156418318, 157058362, 223741702, 467016562, 531330346, 601692022, 681377698, 888739174, 931053466, 1037629198, 1390950926, 1392718618, 2175608494, 2377982166, 3045063946, 5136468646
Offset: 1

Views

Author

Alexander Adamchuk, May 26 2007, Jun 20 2007

Keywords

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[ If[ PowerMod[43, 2n - 1, 2n] == 1, AppendTo[lst, 2n]], {n, 2, 1800000000}]; lst (* Robert G. Wilson v, Jun 01 2007 *)
  • PARI
    is(k) = k > 2 && !(k % 2) &&  Mod(43, k)^(k-1) == 1; \\ Amiram Eldar, Sep 29 2024

Extensions

More terms from Robert G. Wilson v, Jun 01 2007

A090083 Even pseudoprimes to base 9.

Original entry on oeis.org

4, 8, 28, 52, 286, 364, 532, 616, 946, 1036, 1288, 2806, 2926, 3052, 4376, 4636, 5356, 6364, 8744, 8866, 11476, 12124, 15964, 17446, 19096, 19684, 21196, 21736, 24046, 24388, 26596, 31876
Offset: 1

Views

Author

Labos Elemer, Nov 25 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s=Mod[ -1+9^(n-1), n]; If[Equal[s, 0]&&!PrimeQ[n]&&EvenQ[n], Print[n]], {n, 1, 1000000}]
  • PARI
    is(n)=Mod(9, n)^(n-1)==1&&!isprime(n)&&n%2==0 \\ Charles R Greathouse IV, Apr 12 2012
    
  • PARI
    p=2; forprime(q=3, 1e8, forstep(n=p+1, q-1, 2, if(Mod(9, n)^(n-1)==1, print1(n", "))); p=q) \\ Charles R Greathouse IV, Apr 12 2012

A130441 Even pseudoprimes to base 37.

Original entry on oeis.org

4, 6, 12, 18, 28, 36, 66, 246, 268, 396, 1476, 1876, 2044, 2556, 2706, 3556, 5986, 9514, 11034, 16236, 17466, 25626, 31956, 34716, 120786, 149076, 153756, 246484, 259588, 281886, 283276, 483636, 552926, 559966, 623566, 670186, 721846, 846076, 1050666
Offset: 1

Views

Author

Alexander Adamchuk, May 26 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ f=PowerMod[ 37, 2n-1, 2n ]; If[ f==1, Print[ 2n ] ], {n,2,500000} ]
    lst = {}; Do[ If[ PowerMod[37, 2n - 1, 2n] == 1, AppendTo[lst, 2n]], {n, 2, 2^31}]; lst (* Robert G. Wilson v, Jun 01 2007 *)
  • PARI
    is(k) = k > 2 && !(k % 2) &&  Mod(37, k)^(k-1) == 1; \\ Amiram Eldar, Sep 29 2024

A130437 Even pseudoprimes to base 19.

Original entry on oeis.org

6, 18, 906, 5466, 257302, 825366, 1880082, 6637546, 6765826, 8936722, 9483706, 34087054, 51914026, 54806454, 57663334, 57819882, 67372378, 91835206, 98963734, 102985926, 117697186, 134457346, 143888806, 172530646, 206623266
Offset: 1

Views

Author

Alexander Adamchuk, May 26 2007

Keywords

Crossrefs

Cf. A020147 = Pseudoprimes to base 19. Cf. A006935 = Even pseudoprimes (or primes) to base 2: n divides 2^n - 2, n even. Cf. A130433 = Even pseudoprimes to base 3. Cf. A090082 = Even pseudoprimes to base 5. Cf. A090083, A090084, A090085. Cf. A130434, A130435, A130436, A130438, A130439, A130440, A130441, A130442, A130443.

Programs

  • Mathematica
    lst = {}; Do[ If[ PowerMod[19, 2n - 1, 2n] == 1, AppendTo[lst, 2n]], {n, 2, 2*10^9}]; lst (* Robert G. Wilson v, Jun 01 2007 *)
  • PARI
    is(k) = k > 2 && !(k % 2) &&  Mod(19, k)^(k-1) == 1; \\ Amiram Eldar, Sep 29 2024

Extensions

More terms from Robert G. Wilson v, Jun 01 2007

A090089 Smallest even pseudoprimes to odd base=4n-1, not necessarily exceeding n.

Original entry on oeis.org

286, 6, 10, 14, 6, 22, 26, 6, 34, 38, 6, 46, 10, 6, 58, 62, 6, 10, 74, 6, 82, 86, 6, 94, 14, 6, 106, 10, 6, 118, 122, 6, 10, 134, 6, 142, 146, 6, 14, 158, 6, 166, 10, 6, 178, 14, 6, 10, 194, 6, 202, 206, 6, 214, 218, 6, 226, 10, 6, 14, 22, 6, 10, 254, 6, 262, 14, 6, 274, 278, 6
Offset: 1

Views

Author

Labos Elemer, Nov 25 2003

Keywords

Comments

There are no even pseudoprimes to an even base.

Examples

			n=1: base = 4n-1=3, smallest relevant power is -1+2^(286-1) which is divisible by 286.
Sieving further residue classes, smallest regularly arising pseudoprimes are 6,10 etc..
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 2}, While[GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, k += 2]; k]; Table[a[4*n - 1], {n, 1, 100}] (* Amiram Eldar, Nov 11 2019 *)

Formula

a(n)=Min{x=4n-1 number; Mod[ -1+n^(x-1), x]=0}

A253233 Smallest even pseudoprime (>2n+1) in base 2n+1.

Original entry on oeis.org

4, 286, 124, 16806, 28, 70, 244, 742, 1228, 906, 1852, 154, 28, 286, 52, 66, 496, 442, 66, 1834, 344, 526974, 76, 506, 66, 70, 286, 1266, 2296, 946, 130, 5662, 112, 154, 14246, 370, 276, 8614, 2806, 2626, 112, 1558, 276, 2626, 19126, 1446, 322, 658, 176, 742, 190, 946, 5356, 742, 186, 190, 176, 8474, 2806, 2242, 148
Offset: 0

Views

Author

Eric Chen, May 17 2015

Keywords

Comments

For an even base there are no even pseudoprimes.
Conjecture: There are infinitely many even pseudoprimes in every odd base.
Records: 4, 286, 16806, 526974, 815866, 838246, ..., and they occur at indices: 0, 1, 3, 21, 503, 691, ...

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2 * n + 2}, While[PrimeQ[k] || OddQ[k] || PowerMod[2 * n + 1, k - 1, k] != 1, k++ ]; k]; Table[ f[n], {n, 0, 60}]
  • PARI
    a(n) = for(k=n+1, 2^24, if(!isprime(2*k) && Mod(2*n+1, 2*k)^(2*k-1) == Mod(1, 2*k), return(2*k)))

Formula

a(A005097(n-1)) = A108162(n).
Previous Showing 11-16 of 16 results.