cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A091238 Number of nodes in rooted tree with GF2X-Matula number n.

Original entry on oeis.org

1, 2, 3, 3, 5, 4, 4, 4, 6, 6, 4, 5, 6, 5, 7, 5, 9, 7, 5, 7, 7, 5, 8, 6, 5, 7, 8, 6, 6, 8, 5, 6, 7, 10, 9, 8, 7, 6, 8, 8, 7, 8, 7, 6, 10, 9, 5, 7, 7, 6, 11, 8, 7, 9, 6, 7, 10, 7, 7, 9, 6, 6, 9, 7, 11, 8, 8, 11, 7, 10, 8, 9, 6, 8, 12, 7, 9, 9, 8, 9, 11, 8, 9, 9, 13, 8, 10, 7, 8, 11, 8, 10, 8, 6, 9, 8
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

Each n occurs A000081(n) times.

Examples

			GF2X-Matula numbers for unoriented rooted trees are constructed otherwise just like the standard Matula-Goebel numbers (cf. A061773), but instead of normal factorization in N, one factorizes in polynomial ring GF(2)[X] as follows. Here IR(n) is the n-th irreducible polynomial (A014580(n)) and X stands for GF(2)[X]-multiplication (A048720):
................................................o...................o
................................................|...................|
............o...............o...o........o......o...............o...o
............|...............|...|........|......|...............|...|
...o........o......o...o....o...o....o...o......o......o.o.o....o...o
...|........|.......\./......\./......\./.......|.......\|/......\./.
x..x........x........x........x........x........x........x........x..
1..2 = IR(1)..3 = IR(2)..4 = 2 X 2....5 = 3 X 3....6 = 2 X 3....7 = IR(3)..8 = 2 X 2 X 2..9 = 3 X 7
Counting the vertices (marked with x's and o's) of each tree above, we get the eight initial terms of this sequence: 1,2,3,3,5,4,4,4,6.
		

Crossrefs

a(n) = A061775(A091205(n)). a(A091230(n)) = n+1. Cf. A091239-A091241.

A245815 Permutation of natural numbers induced when A245821 is restricted to nonprime numbers: a(n) = A062298(A245821(A018252(n))).

Original entry on oeis.org

1, 2, 5, 3, 4, 7, 9, 59, 11, 6, 20, 125, 18, 25, 15, 10, 16, 26, 32, 31, 103, 8, 12, 35, 41, 50, 13, 39, 85, 64, 43, 164, 29, 38, 17, 66, 19, 24, 21, 45, 132, 37, 105, 139, 82, 33, 65, 27, 507, 52, 14, 180, 161, 96, 46, 22, 190, 141, 87, 1603, 80, 36, 143, 107, 54, 670, 34, 47, 23, 68, 177, 1337, 40
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

This permutation is induced when A245821 is restricted to nonprimes, A018252, the first column of A114537, but equally, when it is restricted to column 2 (A007821), column 3 (A049078), etc. of that square array, or alternatively, to the successive rows of A236542.
The sequence of fixed points f(n) begins as 1, 2, 15, 142, 548, 1694, 54681. A018252(f(n)) gives the nonprime terms of A245823.

Crossrefs

Inverse: A245816.
Related permutations: A245813, A245819, A245821.

Programs

Formula

a(n) = A062298(A245821(A018252(n))).
As a composition of related permutations:
a(n) = A245813(A245819(n)).
Also following holds for all n >= 1:
Previous Showing 21-22 of 22 results.