cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A285737 Expansion of Product_{k>=1} (1 + k^2*x^k)^k.

Original entry on oeis.org

1, 1, 8, 35, 107, 421, 1312, 4474, 13622, 43977, 130473, 388025, 1146640, 3265446, 9352424, 26033637, 72144351, 196664848, 532768901, 1422725368, 3768251677, 9893857617, 25709347054, 66367179293, 169754459790, 431237516979, 1086813719408, 2722241654623
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+k^2*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

A371311 Expansion of e.g.f. Product_{k>=1} (1 + k*x^k/(k-1)!).

Original entry on oeis.org

1, 1, 4, 21, 52, 465, 3306, 14161, 74208, 960777, 10558630, 44851521, 361716576, 2473446157, 46951741760, 735722365995, 3502764883456, 27660533205537, 257573937401838, 2415069153393553, 62591287234200960, 1356650271603527061, 6966660193683272104, 61046400429116180475
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2024

Keywords

Comments

"EFJ" (unordered, size, labeled) transform of squares.

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + k x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Previous Showing 11-12 of 12 results.