cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A360640 a(n) is the start of the least run of exactly n consecutive odd numbers that are A000120-perfect numbers (A175522).

Original entry on oeis.org

25, 123, 31803, 8019811, 130194395
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2023

Keywords

Comments

a(6) > 2*10^11, if it exists.

Examples

			Table of values of A000120 and A093653 for k = a(n), a(n)+2, ..., a(n)+2*(n-1):
  n |      a(n)              A000120(k)              A093653(k)
  --+----------------------------------------------------------
  1 |        25                       3                       6
  2 |       123                    6, 6.                 12, 12
  3 |     31803              10, 10, 11              20, 20, 22
  4 |   8019811          15, 15, 16, 15          30, 30, 32, 30
  5 | 130194395  17, 17, 18, 15, 16, 16  34, 34, 36, 30, 32, 32
		

Crossrefs

Programs

  • Mathematica
    q[n_] := DivisorSum[n, DigitCount[#, 2, 1] &] == 2 * DigitCount[n, 2, 1]; seq[len_, nmax_] := Module[{s = Table[0, {len}], v = {}, n = 1, c = 0, m}, While[c <= len && n <= nmax, If[q[n], v = Join[v, {n}], m = Length[v]; v = {}; If[0 < m <= len && s[[m]] == 0, c++; s[[m]] = n - 2*m]]; n += 2]; s]; seq[3, 10^5]
  • PARI
    lista(len, nmax) = {my(s = vector(len), v=[], n = 1, c = 0, m); while(c <= len && n <= nmax, if(sumdiv(n, d, hammingweight(d)) == 2 * hammingweight(n), v = concat(v, n), m =#v; v = []; if(0 < m && m <= len && s[m] == 0, c++; s[m] = n - 2*m)); n += 2); s};

A373094 a(n) is the least number k such that A373092(k) = n.

Original entry on oeis.org

1, 4, 7, 12, 24, 120, 1260, 1829520
Offset: 0

Views

Author

Amiram Eldar, May 23 2024

Keywords

Comments

a(n) is the least number k such that the number of iterations of the map x -> A093653(x) required to reach from k to a fixed point is n.
a(8) > 4*10^10.

Examples

			The iterations for the n = 0..7 are:
  n     a(n)  iterations
  -  -------  --------------------------------------------------
  0        1   1
  1        4   4 -> 3
  2        7   7 -> 4 -> 3
  3       12   12 -> 9 -> 5 ->3
  4       24   24 -> 12 -> 9 -> 5 -> 3
  5      120   120 -> 36 -> 15 -> 9 -> 5 -> 3
  6     1260   1260 -> 120 -> 36 -> 15 -> 9 -> 5 -> 3
  7  1829520   1829520 -> 1260 -> 120 -> 36 -> 15 -> 9 -> 5 -> 3
		

Crossrefs

Cf. A093653, A095347 (decimal analog), A373092.

Programs

  • Mathematica
    d[n_] := d[n] = DivisorSum[n, Plus @@ IntegerDigits[#, 2] &];
    f[n_] := -2 + Length@ FixedPointList[d, n];
    seq[len_] := Module[{s = Table[0, {len}], c = 0, i, n = 1}, While[c < len, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[7]
  • PARI
    f(n) = {my(c = 0); while(6 % n, n = sumdiv(n, d, hammingweight(d)); c++); c;}
    lista(len) = {my(s = vector(len), c = 0, i, n = 1); while(c < len, i = f(n) + 1; if(i <= len && s[i] == 0, c++; s[i] = n); n++); s;}

A339551 Starts of runs of 3 consecutive numbers with the same product of the binary weights of their divisors (A339549).

Original entry on oeis.org

513059433, 3007912105, 4791685641, 11555664153, 44615854297, 111890605585, 121111724905, 163901238153
Offset: 1

Views

Author

Amiram Eldar, Dec 08 2020

Keywords

Comments

Analogous to A338453 as A339549 is analogous to A093653.

Examples

			513059433 is a term since A339549(513059433) = A339549(513059434) = A339549(513059435) = 1166400.
		

Crossrefs

Subsequence of A339550.

Programs

  • Mathematica
    f[n_] := Times @@ (DigitCount[#, 2, 1] & /@ Divisors[n]); s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@  fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 5*10^9}]; s

A360643 a(n) is the least A000120-perfect number (A175522) whose binary weight (A000120) is n, or 0 if no such number exists.

Original entry on oeis.org

2, 0, 25, 169, 841, 95, 247, 943, 767, 5999, 6139, 16123, 30655, 90109, 122847, 245695, 522237, 1572591, 1966015, 3932095, 12582651, 28311519, 33423343, 100663023, 133693435, 402128831, 931135479, 1069547515, 1610612607, 11802771447, 12884901567, 25736249279
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2023

Keywords

Comments

Apparently, the sequence is increasing after n = 6.

Examples

			a(1) = 2 since A000120(2) = 1 and A093653(2)/A000120(2) = 4/2 = 2.
a(2) = 0 since there is no number m with binary weight 2 and with A093653(m) = 4.
a(3) = 25 since A000120(25) = 3 and A093653(25)/A000120(25) = 6/3 = 2, and 25 is the least number with this property.
		

Crossrefs

Programs

  • Mathematica
    seq[len_, nmax_] := Module[{s = Table[-1, {len}], n = 3, c = 2, bw, dbw}, s[[1]] = 2; While[c < len && n <= nmax, bw = DigitCount[n, 2, 1]; If[bw <= len && s[[bw]] < 0, dbw = DivisorSum[n, DigitCount[#, 2, 1] &]; If[dbw == 2*bw, c++; s[[bw]] = n]]; n += 2]; s]; seq[16, 10^6]
  • PARI
    lista(len, nmax) = {my(s = vector(len,i,-1), n = 3, c = 2, bw, dbw); s[1] = 2; while(c < len && n <= nmax, bw = hammingweight(n); if(bw <= len && s[bw] < 0, dbw = sumdiv(n, d, hammingweight(d)); if(dbw == 2*bw, c++; s[bw] = n)); n += 2); s};
Previous Showing 31-34 of 34 results.