cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A096834 Singular primes mentioned in A096833 around the listed primorials.

Original entry on oeis.org

211, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309
Offset: 1

Views

Author

Labos Elemer, Jul 14 2004

Keywords

Comments

Neighborhoods of most primorials (=center) are either empty or poor of primes. The listed primes arise if center=A002110(A096833(n)), while radius=ceiling(log(center)).
The subsequent terms are too large to include: a(6) = A002110(66)-1, which has 131 digits. a(7) = A002110(68)-1, which has 136 digits. a(8) = A002110(75)+1, which has 154 digits. - David Wasserman, Nov 16 2007

Examples

			n=6: around 30030, the prime in question is 30029;
n=66: around A002110[66], the single prime has more than 121 decimal digits.
		

Crossrefs

A096835 Number of primes in the neighborhood of 3^n with radius ceiling(log(3^n)).

Original entry on oeis.org

3, 2, 3, 2, 2, 2, 1, 3, 2, 2, 0, 0, 1, 3, 3, 0, 2, 2, 2, 3, 2, 4, 1, 3, 3, 2, 3, 2, 1, 2, 2, 1, 0, 1, 2, 5, 2, 3, 0, 2, 4, 1, 0, 3, 3, 2, 2, 1, 3, 3, 2, 1, 2, 3, 2, 2, 5, 0, 3, 2, 2, 3, 4, 0, 1, 3, 0, 1, 4, 0, 2, 1, 1, 2, 3, 2, 3, 1, 2, 3, 3, 0, 0, 1, 2, 2, 2, 2, 2, 2, 5, 3, 0, 1, 6, 1, 4, 5, 1, 2, 3, 2, 1, 1, 2
Offset: 1

Views

Author

Labos Elemer, Jul 14 2004

Keywords

Crossrefs

Formula

a(n) equals almost A096509(3^n) >= a(n) because here only primes are counted, the true prime powers not.

A096836 Number of primes in the neighborhood of 10^n with radius ceiling(log(10^n)).

Original entry on oeis.org

3, 3, 1, 2, 3, 1, 1, 2, 3, 1, 3, 1, 1, 3, 1, 0, 7, 5, 1, 3, 0, 2, 2, 2, 1, 0, 0, 0, 2, 3, 3, 2, 4, 0, 2, 1, 3, 1, 5, 2, 0, 2, 4, 4, 2, 1, 3, 3, 3, 1, 0, 0, 0, 1, 2, 2, 1, 0, 1, 4, 4, 1, 2, 5, 2, 1, 4, 2, 3, 3, 2, 3, 3, 2, 1, 1, 2, 3, 1, 4, 4, 0, 4, 0, 2, 2, 0, 2, 3, 2, 6, 0, 3, 4, 4, 1, 1, 4, 0, 0, 4, 3, 3, 0, 3
Offset: 1

Views

Author

Labos Elemer, Jul 14 2004

Keywords

Examples

			a(5)=3 and the 3 primes in [99988,100012] are {99989,99991,100003}.
		

Crossrefs

Formula

a(n) equals almost A096509(10^n) >= a(n) because here only primes are counted, the true prime powers not.

A096837 Number of primes in the neighborhood of n^n with radius ceiling(log(n^n)).

Original entry on oeis.org

0, 3, 3, 2, 2, 2, 3, 2, 2, 1, 0, 1, 3, 3, 1, 2, 1, 0, 6, 1, 2, 2, 3, 1, 1, 3, 3, 1, 0, 3, 2, 4, 2, 2, 4, 3, 2, 1, 5, 1, 1, 2, 3, 1, 3, 0, 2, 1, 3, 2, 1, 0, 4, 1, 2, 2, 2, 2, 1, 0, 1, 3, 2, 1, 0, 0, 2, 1, 3, 1, 1, 2, 1, 0, 2, 3, 5, 3, 3, 0, 3, 2, 2, 4, 4, 0, 6, 2, 1, 2, 1, 3, 3, 2, 1, 3, 2, 2, 1, 4, 1, 6, 0, 2, 1
Offset: 1

Views

Author

Labos Elemer, Jul 14 2004

Keywords

Examples

			a(3)=3 and the 3 primes in [23,31] are {23,29,31}.
		

Crossrefs

Formula

a(n) almost equals A096509(n^n) >= a(n) because here only primes are counted, the true prime powers not.

A096838 Number of primes in the neighborhood of prime(n), the n-th prime in the center with radius ceiling(log(prime(n))).

Original entry on oeis.org

2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 4, 4, 3, 1, 3, 4, 4, 4, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 1, 3, 4, 4, 3, 2, 2, 3, 3, 4, 2, 2, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 3, 2, 3, 4, 4, 3, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3
Offset: 1

Views

Author

Labos Elemer, Jul 14 2004

Keywords

Examples

			a(100)=2 and the two primes in [534,548] are {541,547};
		

Crossrefs

Formula

a(n) almost equals A096509(prime(n)) >= a(n) because here only primes are counted, the true prime powers not.
For all n, a(n) >= 1.

A217864 Number of prime numbers between floor(n*log(n)) and (n + 1)*log(n + 1).

Original entry on oeis.org

0, 2, 2, 2, 0, 2, 1, 2, 2, 1, 1, 2, 0, 1, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 2, 0, 0, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 0, 1, 0, 1, 3, 2, 0, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Jon Perry, Oct 13 2012

Keywords

Comments

Conjecture: a(n) is unbounded.
If Riemann Hypothesis is true, this is probably true as the PNT is generally a lower bound for Pi(n).
Conjecture: a(n)=0 infinitely often.
The first conjecture follows from Dickson's conjecture. The second conjecture follows from a theorem of Brauer & Zeitz on prime gaps. - Charles R Greathouse IV, Oct 15 2012

Examples

			log(1)=0 and 2*log(2) ~ 1.38629436112. Hence, a(1)=0.
Floor(2*log(2)) = 1 and 3*log(3) ~ 3.295836866. Hence, a(2)=2.
		

References

  • A. Brauer and H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre, Sitz. Berliner Math. Gee. 29 (1930), pp. 116-125; cited in Erdos 1935.

Crossrefs

An alternate version of A166712.

Programs

  • JavaScript
    function isprime(i) {
    if (i==1) return false;
    if (i==2) return true;
    if (i%2==0) return false;
    for (j=3;j<=Math.floor(Math.sqrt(i));j+=2)
    if (i%j==0) return false;
    return true;
    }
    for (i=1;i<88;i++) {
    c=0;
    for (k=Math.floor(i*Math.log(i));k<=(i+1)*Math.log(i+1);k++) if (isprime(k)) c++;
    document.write(c+", ");
    }
    
  • Mathematica
    Table[s = Floor[n*Log[n]]; PrimePi[(n+1) Log[n+1]] - PrimePi[s] + Boole[PrimeQ[s]], {n, 100}] (* T. D. Noe, Oct 15 2012 *)
  • PARI
    a(n)=sum(k=n*log(n)\1,(n+1)*log(n+1),isprime(k)) \\ Charles R Greathouse IV, Oct 15 2012
Previous Showing 21-26 of 26 results.