cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A195913 The denominator in a fraction expansion of log(2)-Pi/8.

Original entry on oeis.org

2, 3, 12, 30, 35, 56, 90, 99, 132, 182, 195, 240, 306, 323, 380, 462, 483, 552, 650, 675, 756, 870, 899, 992, 1122, 1155, 1260, 1406, 1443, 1560, 1722, 1763, 1892, 2070, 2115, 2256, 2450, 2499, 2652, 2862, 2915
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 25 2011

Keywords

Comments

The minus sign in front of a fraction is considered the sign of the numerator and hence the sign of the fraction does not appear in this sequence.

Examples

			1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ...] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
		

References

  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

Crossrefs

Formula

log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(2+x+9*x^2+14*x^3+3*x^4+3*x^5) / ((1-x)^3*(1+x+x^2)^2). - Colin Barker, Dec 17 2015
From Bernard Schott, Aug 11 2019: (Start)
k >= 1, a(3*k) = (4*k-1) * 4*k,
k >= 0, a(3*k+1) = (4*k+1) * (4*k+2),
k >= 0, a(3*k+2) = (4*k+1) * (4*k+3).
The even terms a(3*k) and a(3*k+1) come from log(2) and the odd terms a(3*k+2) come from - Pi/8. (End)

A098326 Recurrence derived from the decimal places of sqrt(2). a(0)=0, a(i+1)=position of first occurrence of a(i) in decimal places of sqrt(2).

Original entry on oeis.org

0, 13, 5, 7, 11, 186, 239, 336, 1284, 5889, 11708, 70286, 19276, 35435, 22479, 42202, 28785, 107081, 973876, 1187108
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 13 2004

Keywords

Examples

			sqrt(2)=1.4142135623730950488...
So for example a(2)=13 because 13th decimal place of sqrt(2) is 0; then a(3)=5 because 13 is found starting at the 5th decimal place; a(4)=7 because 5 is at the 7th decimal place and so on.
		

Crossrefs

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A120482 for sqrt(3), A189893 for sqrt(5). A002193 for digits of sqrt(2).

Programs

  • Maple
    with(StringTools): Digits:=10000: G:=convert(evalf(sqrt(2)),string): a[0]:=0: for n from 1 to 10 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # Nathaniel Johnston, Apr 30 2011

Extensions

a(18)-a(19) from Nathaniel Johnston, Apr 30 2011

A097291 Contains exactly once every pair (i,j) of positive integers.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 2, 3, 1, 4, 4, 2, 4, 3, 4, 1, 5, 5, 2, 5, 3, 5, 4, 5, 1, 6, 6, 2, 6, 3, 6, 4, 6, 5, 6, 1, 7, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 7, 1, 8, 8, 2, 8, 3, 8, 4, 8, 5, 8, 6, 8, 7, 8, 1, 9, 9, 2, 9, 3, 9, 4, 9, 5, 9, 6, 9, 7, 9, 8, 9, 1, 10, 10, 2, 10, 3, 10, 4, 10, 5, 10, 6, 10, 7, 10, 8, 10, 9, 10
Offset: 1

Views

Author

Clark Kimberling, Aug 05 2004

Keywords

Comments

The pairs (i,j) are ordered in segments thus: segment 1: 1 segment 2: 1 2 2 segment 3: 1 3 3 2 3 segment 4: 1 4 4 2 4 3 4 segment 5: 1 5 5 2 5 3 5 4 5 and so on.

Crossrefs

Cf. A098289.

A098327 Recurrence sequence derived from the decimal places of sqrt(e).

Original entry on oeis.org

0, 9, 60, 79, 59, 137, 479, 2897, 1397, 24474, 63515, 71287, 191542, 1432289, 1766633, 1380465, 2894629, 1464385, 10676561
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 13 2004

Keywords

Comments

a(20) > 5*10^7.

Examples

			sqrt(e)=1.6487212707001281468...
So for example, with a(1)=0, a(2)=9 because 9th decimal place is 0; a(3)=60 because 9 appears at decimal place number 60 and so on.
		

Crossrefs

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2).

Formula

a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of sqrt(e), a(i+1)=p(i).

A098328 Recurrence sequence derived from the digits of the cube root of 2 after its decimal point.

Original entry on oeis.org

0, 7, 14, 42, 147, 321, 473, 322, 785, 1779, 3039, 1957, 16446, 274134, 374781, 110639, 248175, 385504, 2359264, 5108010, 3822244, 3812946, 9896631
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 14 2004

Keywords

Examples

			2^(1/3)=1.259921049894873164767210607...
So for example, with a(1)=0, a(2)=7 because the 7th digit after the decimal point is 0; a(3)=14 because the 14th digit after the decimal point is 7 and so on.
		

Crossrefs

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A098327 for sqrt(e). A002580 for digits of 2^(1/3).

Programs

  • Maple
    with(StringTools): Digits:=10000: G:=convert(evalf(root(2,3)),string): a[0]:=0: for n from 1 to 12 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # Nathaniel Johnston, Apr 30 2011

Formula

a(1)=0. a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of 2^(1/3), a(i+1)=p(i).

Extensions

More terms from Ryan Propper, Jul 21 2006

A120482 Recurrence sequence derived from the digits of the square root of 3 after its decimal point.

Original entry on oeis.org

0, 4, 22, 215, 2737, 8636, 20805, 38867, 1868, 6505, 5767, 1004, 1216, 11702, 55995, 43202, 314308, 2100749, 2420235, 7750204, 5141127, 2950527, 3113789, 42198, 119161, 96031, 77643, 10695, 105061, 37099, 176209, 3390478, 4549989, 9038843
Offset: 0

Views

Author

Ryan Propper, Jul 21 2006

Keywords

Examples

			sqrt(3) = 1.73205080756887729352744634151...
So for example, with a(0) = 0, a(1) = 4 because the 4th digit after the decimal point is 0; a(2) = 22 because the 22nd digit after the decimal point is 4 and so on.
		

Crossrefs

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A189893 for sqrt(5), A098327 for sqrt(e), A098328 for 2^(1/3).

Programs

  • Maple
    with(StringTools): Digits:=10000: G:=convert(evalf(sqrt(3)),string): a[0]:=0: for n from 1 to 6 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # Nathaniel Johnston, Apr 30 2011

Formula

a(0) = 0; for i >= 0, a(i+1) = position of first occurrence of a(i) in decimal places of sqrt(3).

A189893 Recurrence sequence derived from the digits of the square root of 5 after its decimal point.

Original entry on oeis.org

0, 4, 10, 65, 173, 22, 96, 15, 48, 78, 13, 201, 487, 594, 2719, 5146, 8719, 11530, 15308, 76411, 76016, 42220, 67129, 45349, 170266, 255576, 457846, 865810, 1131083, 8045547, 7669757
Offset: 0

Views

Author

Nathaniel Johnston, Apr 30 2011

Keywords

Examples

			sqrt(5) = 2.2360679774997896964091736687...
So for example, with a(0) = 0, a(1) = 4 because the 4th digit after the decimal point is 0; a(2) = 10 because the 10th digit after the decimal point is 4 and so on.
		

Crossrefs

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A120482 for sqrt(3), A098327 for sqrt(e), A098328 for 2^(1/3).

Programs

  • Maple
    with(StringTools): Digits:=10000: G:=convert(evalf(sqrt(5)),string): a[0]:=0: for n from 1 to 17 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od:

Formula

a(0) = 0; for i >= 0, a(i+1) = position of first occurrence of a(i) in decimal places of sqrt(5).

A097290 Rectangular array T, by antidiagonals: T(n,k) = rank of k-th n in A097289.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 8, 11, 7, 9, 13, 16, 12, 10, 14, 18, 21, 23, 17, 15, 19, 25, 28, 30, 24, 22, 20, 26, 32, 35, 37, 39, 31, 29, 27, 33, 41, 44, 46, 48, 40, 38, 36, 34, 42, 50, 53, 55, 57, 59, 49, 47, 45, 43, 51, 61, 64, 66, 68, 70, 60, 58, 56, 54, 52, 62, 72, 75, 77, 79, 81, 83
Offset: 1

Views

Author

Clark Kimberling, Aug 05 2004

Keywords

Comments

As a sequence this is a permutation of the natural numbers.

Examples

			Northwest corner:
1 2 5 8
3 4 11 16
6 7 12 23
9 10 17 24
		

Crossrefs

Cf. A098289.
Previous Showing 11-18 of 18 results.