cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A326349 Number of non-nesting, topologically connected simple graphs covering {1..n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 95, 797
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Examples

			The a(5) = 11 edge-sets:
  {13,14,25}
  {13,24,25}
  {13,24,35}
  {14,24,35}
  {14,25,35}
  {13,14,24,25}
  {13,14,24,35}
  {13,14,25,35}
  {13,24,25,35}
  {14,24,25,35}
  {13,14,24,25,35}
		

Crossrefs

The binomial transform is the non-covering case A326293.
Topologically connected, covering simple graphs are A324327.
Non-crossing, covering simple graphs are A324169.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]

A324325 Number of non-crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 14, 15, 26, 22, 21, 29, 19, 30, 33, 31, 30, 66, 38, 42, 52, 56, 42, 47, 45, 57, 82, 77, 67, 77, 67, 101, 98, 135, 64, 137, 97, 176, 104, 109, 109, 118, 105, 231, 213, 97, 127, 181, 139, 297, 173, 385, 195, 269
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(16) = 14 non-crossing multiset partitions of the multiset {1,2,3,4}:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,4},{2,3}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{1,2},{4}}
  {{1},{2},{3},{4}}
Missing from this list is {{1,3},{2,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324326(n) = A318284(n).

A224786 G.f. satisfies: A(x) = Sum_{n>=0} x^n / (A(x) - n*x)^n.

Original entry on oeis.org

1, 1, 1, 2, 6, 23, 110, 607, 3742, 25324, 185566, 1457998, 12195992, 108010446, 1008224881, 9883048933, 101418491070, 1086613660608, 12126900841444, 140682966122152, 1693340044490513, 21111988598271746, 272228110567491910, 3625334790162237116
Offset: 0

Views

Author

Paul D. Hanna, Apr 17 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 110*x^6 + 607*x^7 +...
where, by definition,
A(x) = 1 + x/(A(x) - x) + x^2/(A(x) - 2*x)^2 + x^3/(A(x) - 3*x)^3 + x^4/(A(x) - 4*x)^4 + x^5/(A(x) - 5*x)^5 +....
Also, the g.f. satisfies:
A(x) = 1 + x/A(x) + 2*x^2/A(x)^2 + 6*x^3/A(x)^3 + 23*x^4/A(x)^4 + 104*x^5/A(x)^5 + 537*x^6/A(x)^6 +...+ A080108(n)*x^n/A(x)^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/(A-m*x+x*O(x^n))^m)); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = 1 + G(x/A(x)) where G(x) is the g.f. of A080108, where A080108(n) = Sum_{k=1..n} k^(n-k)*C(n-1,k-1).

A306551 Number of non-double-crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 863, 3999, 19880, 105134, 587479, 3449505
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2019

Keywords

Comments

Two blocks of a set partitions double-cross each other if they are of the form {{...a...b...c...},{...x...y...z...}} for some a < x < b < y < c < z or x < a < y < b < z < c.

Examples

			Most small set partitions are not double-crossing. The smallest that is double-crossing is {{1,3,5},{2,4,6}}.
		

Crossrefs

Programs

  • Mathematica
    nonXXQ[stn_]:=!MatchQ[stn,{_,{_,a_,_,b_,_,c_,_},_,{_,x_,_,y_,_,z_,_},_}/;a_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],nonXXQ]],{n,0,8}]

A306558 Number of double-crossing set partitions of {1,...,n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 14, 141, 1267, 10841, 91091, 764092
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2019

Keywords

Comments

Two blocks of a set partitions double-cross each other if they are of the form {{...a...b...c...},{...x...y...z...}} for some a < x < b < y < c < z or x < a < y < b < z < c.

Examples

			The a(7) = 14 double-crossing set partitions:
  {{1,3,5},{2,4,6,7}}
  {{1,3,6},{2,4,5,7}}
  {{1,4,6},{2,3,5,7}}
  {{1,2,4,6},{3,5,7}}
  {{1,3,4,6},{2,5,7}}
  {{1,3,5,6},{2,4,7}}
  {{1,3,5,7},{2,4,6}}
  {{1},{2,4,6},{3,5,7}}
  {{1,3,5},{2,4,6},{7}}
  {{1,3,5},{2,4,7},{6}}
  {{1,3,6},{2,4,7},{5}}
  {{1,3,6},{2,5,7},{4}}
  {{1,4,6},{2},{3,5,7}}
  {{1,4,6},{2,5,7},{3}}
		

Crossrefs

Programs

  • Mathematica
    croXXQ[stn_]:=MatchQ[stn,{_,{_,a_,_,b_,_,c_,_},_,{_,x_,_,y_,_,z_,_},_}/;a_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],croXXQ]],{n,0,8}]
Previous Showing 31-35 of 35 results.