cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A225529 Number of distinct products i*j over all pairs (i,j) with i,j >= 0 and i+j <= n and gcd(i,j) <= 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 9, 11, 14, 16, 20, 22, 26, 29, 32, 35, 41, 44, 50, 54, 59, 63, 70, 74, 80, 85, 92, 98, 108, 112, 121, 129, 137, 144, 153, 158, 170, 177, 186, 192, 204, 210, 222, 231, 240, 249, 262, 270, 284, 293, 305, 315, 331, 340, 353
Offset: 0

Views

Author

Robert Price, May 09 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length[Complement[Union[Flatten[Table[If[i+j≤n&&GCD[i,j]<=1, {i*j}], {i, 0, n}, {j, 0, n}], 1]], {Null}]]; Table[f[n], {n, 0, 100}]

A226323 Number of ordered pairs (i,j) with |i| * |j| <= n and gcd(i,j) <= 1.

Original entry on oeis.org

1, 9, 17, 25, 33, 41, 57, 65, 73, 81, 97, 105, 121, 129, 145, 161, 169, 177, 193, 201, 217, 233, 249, 257, 273, 281, 297, 305, 321, 329, 361, 369, 377, 393, 409, 425, 441, 449, 465, 481, 497, 505, 537, 545, 561, 577, 593, 601, 617, 625, 641, 657, 673, 681, 697
Offset: 0

Views

Author

Robert Price, Jun 03 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, 5+4*add(mobius(k)^2*floor(n/k), k=1..n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 03 2013
  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[Abs[i]*Abs[j] ≤ n && GCD[i, j] ≤ 1, {i, j}], {i, -n, n}, {j, -n, n}], 1]], {Null}]]; Table[f[n], {n, 0, 100}]

Formula

a(n) = 4*A064608(n) + 5 for n > 0, a(0)=1. - Alois P. Heinz, Jun 03 2013
Previous Showing 11-12 of 12 results.