A103240 Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^2)^(n-k)/(n-k)! for n >= k >= 1.
1, 1, 1, 7, 4, 1, 142, 56, 9, 1, 5941, 1780, 207, 16, 1, 428856, 103392, 9342, 544, 25, 1, 47885899, 9649124, 709893, 32848, 1175, 36, 1, 7685040448, 1329514816, 82305144, 3142528, 91150, 2232, 49, 1, 1681740027657, 254821480596, 13598786979
Offset: 1
Examples
Rows of unreduced fractions T(n,k)/(n-k)! begin: [1/0!], [1/1!, 1/0!], [7/2!, 4/1!, 1/0!], [142/3!, 56/2!, 9/1!, 1/0!], [5941/4!, 1780/3!, 207/2!, 16/1!, 1/0!], [428856/5!, 103392/4!, 9342/3!, 544/2!, 25/1!, 1/0!], [47885899/6!, 9649124/5!, 709893/4!, 32848/3!, 1175/2!, 36/1!, 1/0!], ... forming the inverse of matrix P where P(n,k) = A103245(n,k)/(n-k)!: [1/0!], [-1/1!, 1/0!], [1/2!, -4/1!, 1/0!], [-1/3!, 16/2!, -9/1!, 1/0!], [1/4!, -64/3!, 81/2!, -16/1!, 1/0!], ...
Programs
-
PARI
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^2)^(r-c)/(r-c)!))); return(if(n
Formula
For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^2)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^2)^(j-k)*T(n, j).
Comments