A111195
a(n) = 2^(-n) * Sum_{k=0..n} binomial(2*n+1, 2*k+1) * A000364(k).
Original entry on oeis.org
1, 2, 5, 26, 269, 4666, 121017, 4370722, 209364537, 12833657010, 979336390669, 91018760056938, 10120101446389765, 1326280083965014634, 202311875122389093761, 35535622109342844729074
Offset: 0
-
t = Range[0, 34]!CoefficientList[ Series[ Sec[x], {x, 0, 34}], x]; f[n_] := 2^(-n)*Sum [Binomial[2n + 1, 2k + 1]*t[[2k + 1]], {k, 0, n}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Oct 24 2005 *)
Table[Sum[Binomial[2*n + 1, 2*k + 1]*Abs[EulerE[2*k]], {k, 0, n}] / 2^n, {n, 0, 20}] (* Vaclav Kotesovec, Jul 10 2021 *)
A111196
a(n) = 2^(-n)*Sum_{k=0..n} binomial(2*n+1, 2*k+1)*A000364(n-k).
Original entry on oeis.org
1, 2, 9, 78, 1141, 25442, 804309, 34227438, 1886573641, 130746521282, 11127809595009, 1141012634368398, 138730500808639741, 19735099323279743522, 3247323803322747092109, 611982206046097666022958
Offset: 0
-
t = Range[0, 32]!CoefficientList[ Series[ Sec[x], {x, 0, 32}], x]; f[n_] := 2^(-n)*Sum [Binomial[2n + 1, 2k + 1]*t[[2n - 2k + 1]], {k, 0, n}]; Table[ f[n], {n, 0, 16}] (* Robert G. Wilson v, Oct 24 2005 *)
Table[Sum[Binomial[2*n + 1, 2*k + 1]*Abs[EulerE[2*(n-k)]], {k, 0, n}] / 2^n, {n, 0, 20}] (* Vaclav Kotesovec, Jul 10 2021 *)
A361894
Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 2.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 4, 6, 2, 1, 5, 16, 6, 2, 1, 6, 35, 20, 6, 2, 1, 7, 66, 65, 20, 6, 2, 1, 8, 112, 186, 70, 20, 6, 2, 1, 9, 176, 462, 246, 70, 20, 6, 2, 1, 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1, 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1, 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1
Offset: 1
Triangle T(n, k) starts:
[ 1] 1;
[ 2] 2, 1;
[ 3] 3, 2, 1;
[ 4] 4, 6, 2, 1;
[ 5] 5, 16, 6, 2, 1;
[ 6] 6, 35, 20, 6, 2, 1;
[ 7] 7, 66, 65, 20, 6, 2, 1;
[ 8] 8, 112, 186, 70, 20, 6, 2, 1;
[ 9] 9, 176, 462, 246, 70, 20, 6, 2, 1;
[10] 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1;
[11] 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1;
[12] 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1.
.
T(4, k) counts Fibonacci meanders with central angle 180 degrees and length 8 that make k left turns. Written as binary strings (L = 1, R = 0):
k = 1: 11000000, 10010000, 10000100, 10000001;
k = 2: 11110000, 11100100, 11100001, 11010010, 11001001, 10100101;
k = 3: 11111100, 11111001;
k = 4: 11111111.
Comments