cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A157060 Number of integer sequences of length n+1 with sum zero and sum of absolute values 22.

Original entry on oeis.org

2, 66, 1212, 15620, 155850, 1272810, 8823080, 53265960, 285510150, 1379301990, 6078578508, 24680519604, 93093230958, 328512273390, 1091144804400, 3429182092560, 10244035242630, 29206656395910, 79759293448100
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,11); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+10, 11)*Hypergeometric3F2([-10, -n, 1-n], [2, -n-10], 1).
a(n) = (705432/22!)*n*(n+1)*(144850083840000 +292579402752000*n +440986525516800*n^2 +325146872079360*n^3 +235868591146176*n^4 +94960596391200*n^5 +43658519177360*n^6 +10953312870160*n^7 +3585704220196*n^8 +593523073650*n^9 +147783744195*n^10 +16467776610*n^11 +3255909581*n^12 +242376100*n^13 +39230830*n^14 +1873860*n^15 +254046*n^16 +7050*n^17 +815*n^18 +10*n^19 +n^20).
G.f.: 2*x*(1 +10*x +100*x^2 +450*x^3 +2025*x^4 +5400*x^5 +14400*x^6 +25200*x^7 +44100*x^8 +52920*x^9 +63504*x^10 +52920*x^11 +44100*x^12 +25200*x^13 +14400*x^14 +5400*x^15 +2025*x^16 +450*x^17 +100*x^18 +10*x^19 +x^20)/(1-x)^23. (End)

A157061 Number of integer sequences of length n+1 with sum zero and sum of absolute values 24.

Original entry on oeis.org

2, 72, 1442, 20260, 220250, 1958460, 14768810, 96900810, 563873400, 2953859370, 14097919968, 61908797418, 252208679268, 959882556570, 3433533723900, 11603837100660, 37221177046410, 113779617228060, 332648955112250, 933146517188760, 2518877938240202
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,12); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+11, 12)*Hypergeometric3F2([-11, -n, 1-n], [2, -n-11], 1).
a(n) = (2704156/24!)*n*(n+1)*(19120211066880000 + 40213832085504000*n + 61866024285081600*n^2 + 47770238895160320*n^3 + 35477403021764352*n^4 + 15129353226246336*n^5 + 7138320279252096*n^6 + 1926081009812080*n^7 + 648411230685152*n^8 + 117787792143956*n^9 + 30215435337736*n^10 + 3799367698665*n^11 + 775177128207*n^12 + 67808650591*n^13 + 11342892341*n^14 + 678888650*n^15 + 95251222*n^16 + 3725106*n^17 + 446226*n^18 + 10285*n^19 + 1067*n^20 + 11*n^21 + n^22).
G.f.: 2*x*(1 + 11*x + 121*x^2 + 605*x^3 + 3025*x^4 + 9075*x^5 + 27225*x^6 + 54450*x^7 + 108900*x^8 + 152460*x^9 + 213444*x^10 + 213444*x^11 + 213444*x^12 + 152460*x^13 + 108900*x^14 + 54450*x^15 + 27225*x^16 + 9075*x^17 + 3025*x^18 + 605*x^19 + 121*x^20 + 11*x^21 + x^22)/(1-x)^25. (End)

A157062 Number of integer sequences of length n+1 with sum zero and sum of absolute values 26.

Original entry on oeis.org

2, 78, 1692, 25740, 302850, 2912910, 23744840, 168278760, 1056789450, 5968878630, 30684132468, 144977296932, 634756203018, 2593322651430, 9946019437200, 35995371261360, 123490242018990, 403237594259010, 1257743358034100, 3759426449644740, 10799525727846702
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,13); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+12, 13)*Hypergeometric3F2([-12, -n, 1-n], [2, -n-12], 1).
a(n) = (10400600/26!)*n*(n+1)*(2982752926433280000 + 6502800338141184000*n + 10192999816651161600*n^2 + 8194549559065989120*n^3 + 6217354001317404672*n^4 + 2785907939555600640*n^5 + 1345736958526293696*n^6 + 386128480881709632*n^7 + 133329525393692848*n^8 + 26155830342678960*n^9 + 6893260441243396*n^10 + 955286585044572*n^11 + 200534847420673*n^12 + 19880275030680*n^13 + 3426180791086*n^14 + 242021337492*n^15 + 35027635423*n^16 + 1724131200*n^17 + 213288856*n^18 + 6959172*n^19 + 746383*n^20 + 14520*n^21 + 1366*n^22 + 12*n^23 + n^24).
G.f.: 2*x*(1 + 12*x + 144*x^2 + 792*x^3 + 4356*x^4 + 14520*x^5 + 48400*x^6 + 108900*x^7 + 245025*x^8 + 392040*x^9 + 627264*x^10 + 731808*x^11 + 853776*x^12 + 731808*x^13 + 627264*x^14 + 392040*x^15 + 245025*x^16 + 108900*x^17 + 48400*x^18 + 14520*x^19 + 4356*x^20 + 792*x^21 + 144*x^22 + 12*x^23 + x^24)/(1-x)^27. (End)

A157063 Number of integer sequences of length n+1 with sum zero and sum of absolute values 28.

Original entry on oeis.org

2, 84, 1962, 32130, 406800, 4208610, 36881420, 280819260, 1893408750, 11472968760, 63221641758, 319917948246, 1498750896708, 6545498596110, 26808012135000, 103501142484360, 378407481456870, 1315394383751460, 4363052456797550, 13853429338548630
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,14); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+13, 14)*Hypergeometric3F2([-13, -n, 1-n], [2, -n-13], 1).
a(n) = (40116600/28!)*n*(n+1)*(542861032610856960000 + 1222285449585328128000*n + 1949147924290921267200*n^2 + 1623917017366475120640*n^3 + 1256475121883342659584*n^4 + 587860847016245577216*n^5 + 290144191606881266304*n^6 + 87769963981312971072*n^7 + 31017509312522326880*n^8 + 6493644952485577744*n^9 + 1754084550497496360*n^10 + 263474544214276252*n^11 + 56764614862429890*n^12 + 6225163072052509*n^13 + 1102423601827845*n^14 + 88588233707662*n^15 + 13189509162960*n^16 + 769151138899*n^17 + 97984044015*n^18 + 4039324432*n^19 + 446558970*n^20 + 12345619*n^21 + 1198275*n^22 + 19942*n^23 + 1716*n^24 + 13*n^25 + n^26).
G.f.: 2*x*(1 + 13*x + 169*x^2 + 1014*x^3 + 6084*x^4 + 22308*x^5 + 81796*x^6 + 204490*x^7 + 511225*x^8 + 920205*x^9 + 1656369*x^10 + 2208492*x^11 + 2944656*x^12 + 2944656*x^13 + 2944656*x^14 + 2208492*x^15 + 1656369*x^16 + 920205*x^17 + 511225*x^18 + 204490*x^19 + 81796*x^20 + 22308*x^21 + 6084*x^22 + 1014*x^23 + 169*x^24 + 13*x^25 + x^26)/(1-x)^29. (End)

A157064 Number of integer sequences of length n+1 with sum zero and sum of absolute values 30.

Original entry on oeis.org

2, 90, 2252, 39500, 535502, 5930022, 55599992, 452715672, 3262336002, 21114177018, 124188986196, 670283877588, 3346707628446, 15564971674518, 67830161708592, 278406848295312, 1081149205136382, 3988232552194662, 14025412751733092, 47171740235162340
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,15); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+14, 15)*Hypergeometric3F2([-14, -n, 1-n], [2, -n-14], 1).
a(n) = (155117520/30!)*n*(n+1)*(114000816848279961600000 + 264279998869470904320000*n + 428198206877484244992000*n^2 + 368310644587032673075200*n^3 + 290167678780290006589440*n^4 + 141041429579778368449536*n^5 + 71004668064572092241664*n^6 + 22493711118572061653376*n^7 + 8120370606956264477184*n^8 + 1797910570397283902560*n^9 + 496779939204280228640*n^10 + 79886837991962961960*n^11 + 17626771834821917040*n^12 + 2101988853205045350*n^13 + 381651017327064975*n^14 + 34037459504198850*n^15 + 5201044031664375*n^16 + 346174867450230*n^17 + 45303425489595*n^18 + 2220034746930*n^19 + 252351294195*n^20 + 8844405570*n^21 + 883381005*n^22 + 20963670*n^23 + 1857765*n^24 + 26754*n^25 + 2121*n^26 + 14*n^27 + n^28).
G.f.: 2*x*(1 + 14*x + 196*x^2 + 1274*x^3 + 8281*x^4 + 33124*x^5 + 132496*x^6 + 364364*x^7 + 1002001*x^8 + 2004002*x^9 + 4008004*x^10 + 6012006*x^11 + 9018009*x^12 + 10306296*x^13 + 11778624*x^14 + 10306296*x^15 + 9018009*x^16 + 6012006*x^17 + 4008004*x^18 + 2004002 x^19 + 1002001*x^20 + 364364*x^21 + 132496*x^22 + 33124*x^23 + 8281*x^24 + 1274*x^25 + 196*x^26 + 14*x^27 + x^28)/(1-x)^31. (End)

A157065 Number of integer sequences of length n+1 with sum zero and sum of absolute values 32.

Original entry on oeis.org

2, 96, 2562, 47920, 692610, 8174544, 81659522, 708113304, 5431848930, 37403270520, 233931828834, 1341750437352, 7114703302434, 35117045235720, 162298598439330, 705951252118284, 2903050518427962, 11331495633292524, 42132555868774010, 149703679118108220
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,16); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+15, 16)*Hypergeometric3F2([-15, -n, 1-n], [2, -n-15], 1).
a(n) = (601080390/32!)*n*(n+1)*(27360196043587190784000000 + 65137211981397216460800000*n + 107110050449356033228800000*n^2 + 94817527804050105212928000*n^3 + 75961411427539608595660800*n^4 + 38202458280851158526730240*n^5 + 19587950887554046039781376*n^6 + 6463560689425876180435200*n^7 + 2379792991631228553219840*n^8 + 553304095999692103772160*n^9 + 156114125142340061791744*n^10 + 26624540206135314300000*n^11 + 6005394587432947709600*n^12 + 768878902291539639600*n^13 + 142854837644598236640*n^14 + 13893755540913698625*n^15 + 2174500936993696575*n^16 + 161097628663020825*n^17 + 21612664028370855*n^18 + 1212359721607125*n^19 + 141388292047275*n^20 + 5907926749725*n^21 + 605873224515*n^22 + 18281995875*n^23 + 1664663325*n^24 + 34287435*n^25 + 2794869*n^26 + 35175*n^27 + 2585*n^28 + 15*n^29 + n^30).
G.f.: 2*x*(1 + 15*x + 225*x^2 + 1575*x^3 + 11025*x^4 + 47775*x^5 + 207025*x^6 + 621075*x^7 + 1863225*x^8 + 4099095*x^9 + 9018009*x^10 + 15030015*x^11 + 25050025*x^12 + 32207175*x^13 + 41409225*x^14 + 41409225*x^15 + 41409225*x^16 + 32207175*x^17 + 25050025*x^18 + 15030015*x^19 + 9018009*x^20 + 4099095*x^21 + 1863225*x^22 + 621075*x^23 + 207025*x^24 + 47775*x^25 + 11025*x^26 + 1575*x^27 + 225*x^28 + 15*x^29 + x^30)/(1-x)^33. (End)

A157066 Number of integer sequences of length n+1 with sum zero and sum of absolute values 34.

Original entry on oeis.org

2, 102, 2892, 57460, 882030, 11053434, 117206264, 1078467624, 8774904690, 64062783510, 424600608564, 2579499722124, 14479567043214, 75613799423610, 369504358622640, 1698353774374704, 7375213677918294, 30379740299612514, 119122913376492980, 446056011713374860
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,17); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+16, 17)*Hypergeometric3F2([-16, -n, 1-n], [2, -n-16], 1).
a(n) = (2333606220/34!)*n*(n+1)*(7441973323855715893248000000 + 18155084795637437929881600000*n + 30268626521952180908851200000*n^2 + 27504128369891325149577216000*n^3 + 22380511931408981359868313600*n^4 + 11606451235232148856801198080*n^5 + 6053325843616709826370609152*n^6 + 2071495721724703057714876416*n^7 + 776772176331488107582976256*n^8 + 188575401978015909077544960*n^9 + 54249004662342491124700928*n^10 + 9739700938346246478267904*n^11 + 2242198636428402181902944*n^12 + 305221374822225945324800*n^13 + 57932851765719841948880*n^14 + 6064778909442097812240*n^15 + 970512936702416581665*n^16 + 78610569988240809600*n^17 + 10791805239981923160*n^18 + 675564468731071680*n^19 + 80680394732550780*n^20 + 3869168748681600*n^21 + 406620563860680*n^22 + 14666674470240*n^23 + 1369455578790*n^24 + 35960795520*n^25 + 3007754088*n^26 + 54285504*n^27 + 4095964*n^28 + 45440*n^29 + 3112*n^30 + 16*n^31 + n^32).
G.f.: 2*x*(1 + 16*x + 256*x^2 + 1920*x^3 + 14400*x^4 + 67200*x^5 + 313600*x^6 + 1019200*x^7 + 3312400*x^8 + 7949760*x^9 + 19079424*x^10 + 34978944*x^11 + 64128064*x^12 + 91611520*x^13 + 130873600*x^14 + 147232800*x^15 + 165636900*x^16 + 147232800*x^17 + 130873600*x^18 + 91611520*x^19 + 64128064*x^20 + 34978944*x^21 + 19079424*x^22 + 7949760*x^23 + 3312400*x^24 + 1019200*x^25 + 313600*x^26 + 67200*x^27 + 14400*x^28 + 1920*x^29 + 256*x^30 + 16*x^31 + x^32)/(1-x)^35. (End)

A157067 Number of integer sequences of length n+1 with sum zero and sum of absolute values 36.

Original entry on oeis.org

2, 108, 3242, 68190, 1107920, 14692734, 164826956, 1604095524, 13799638910, 106481351240, 745616925614, 4783532975546, 28342922553764, 156153427053890, 804648531335960, 3897769097766104, 17828728267167326, 77310179609631564, 318931533062574470
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,18); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+17, 18)*Hypergeometric3F2([-17, -n, 1-n], [2, -n-17], 1).
a(n) = (9075135300/36!)*n*(n+1)*(2277243837099849063333888000000 + 5681969493970603176728985600000*n + 9596433215362696956739584000000*n^2 + 8930829932059932571221098496000*n^3 + 7373779588191144329720945049600*n^4 + 3932042780814990233298927943680*n^5 + 2083614342312300867651696279552*n^6 + 736784230189243202709052538880*n^7 + 281032534792096725785629118976*n^8 + 70909200002908166006639354112*n^9 + 20771324838612576755137269504*n^10 + 3902581566393773771469894400*n^11 + 915676404299665995395824064*n^12 + 131515117514883976361738848*n^13 + 25463636023538740834106624*n^14 + 2840680826306519243676400*n^15 + 464075830766617076558690*n^16 + 40553554340342769625905*n^17 + 5687795599925219641425*n^18 + 390183416511400627800*n^19 + 47640166465301752080*n^20 + 2555532347549932860*n^21 + 274751324750187660*n^22 + 11400551973525000*n^23 + 1089674111434740*n^24 + 34284748268550*n^25 + 2937122649078*n^26 + 67743183720*n^27 + 5238258144*n^28 + 83536028*n^29 + 5866156*n^30 + 57800*n^31 + 3706*n^32 + 17*n^33 + n^34).
G.f.: 2*x*(1 + 17*x + 289*x^2 + 2312*x^3 + 18496*x^4 + 92480*x^5 + 462400*x^6 + 1618400*x^7 + 5664400*x^8 + 14727440*x^9 + 38291344*x^10 + 76582688*x^11 + 153165376*x^12 + 240688448*x^13 + 378224704*x^14 + 472780880*x^15 + 590976100*x^16 + 590976100*x^17 + 590976100*x^18 + 472780880*x^19 + 378224704*x^20 + 240688448*x^21 + 153165376*x^22 + 76582688*x^23 + 38291344*x^24 + 14727440*x^25 + 5664400*x^26 + 1618400*x^27 + 462400*x^28 + 92480*x^29 + 18496*x^30 + 2312*x^31 + 289*x^32 + 17*x^33 + x^34)/(1-x)^37. (End)

A157069 Number of integer sequences of length n+1 with sum zero and sum of absolute values 40.

Original entry on oeis.org

2, 120, 4002, 93500, 1687002, 24836196, 309182762, 3337508646, 31830097752, 272125000774, 2109875558208, 14977318285254, 98118326104708, 597217934730774, 3397036441760412, 18148572883826236, 91470993083858322, 436643312483178036, 1981038544180652162
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,20); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+19, 20)*Hypergeometric3F2([-19, -n, 1-n], [2, -n-19], 1).
a(n) = (137846528820/40!)*n*(n+1)*(295950609069496384270872084480000000 + 768802633735657375654446366720000000*n + 1329504929585504813849213140992000000*n^2 + 1290742342817244773843889039605760000*n^3 + 1094357439529328748458516078002176000*n^4 + 612766113778575140689735509285273600*n^5 + 334228753141512703020765378377809920*n^6 + 125103295909205358813292403873120256*n^7 + 49218727808847235410751174949228544*n^8 + 13269339361037181895414921845144576*n^9 + 4016584445427935868170163264804864*n^10 + 815165270428049073818572136963328*n^11 + 197974483136507211917478313071872*n^12 + 31108483670185057904409322050688*n^13 + 6244038933930696351877891958272*n^14 + 773683666573321735532607476256*n^15 + 131217385198850594964429765744*n^16 + 12969478215579974430537627276*n^17 + 1890935510804343168840278104*n^18 + 150029328423053669455781465*n^19 + 19066083072333125878657535*n^20 + 1216465853960978843551515*n^21 + 136285407600184771625385*n^22 + 6973959244303571061060*n^23 + 695382022718273834940*n^24 + 28325593615993410660*n^25 + 2534141220949541220*n^26 + 81059848291860174*n^27 + 6552284226337026*n^28 + 160984848978954*n^29 + 11828920639006*n^30 + 215437887572*n^31 + 14466923228*n^32 + 183962712*n^33 + 11343228*n^34 + 89889*n^35 + 5111*n^36 + 19*n^37 + n^38).
G.f.: 2*x*(1 + 19*x + 361*x^2 + 3249*x^3 + 29241*x^4 + 165699*x^5 + 938961*x^6 + 3755844*x^7 + 15023376*x^8 + 45070128*x^9 + 135210384*x^10 + 315490896*x^11 + 736145424*x^12 + 1367127216*x^13 + 2538950544*x^14 + 3808425816*x^15 + 5712638724*x^16 + 6982113996*x^17 + 8533694884*x^18 + 8533694884*x^19 + 8533694884*x^20 + 6982113996*x^21 + 5712638724*x^22 + 3808425816*x^23 + 2538950544*x^24 + 1367127216*x^25 + 736145424*x^26 + 315490896*x^27 + 135210384*x^28 + 45070128*x^29 + 15023376*x^30 + 3755844*x^31 + 938961*x^32 + 165699*x^33 + 29241*x^34 + 3249*x^35 + 361*x^36 + 19*x^37 + x^38)/(1-x)^41. (End)

A157070 Number of integer sequences of length n+1 with sum zero and sum of absolute values 42.

Original entry on oeis.org

2, 126, 4412, 108220, 2049770, 31674678, 413820584, 4687156248, 46894786710, 420487598410, 3418440803052, 25437258929836, 174630760523102, 1113521228343010, 6633053884912560, 37097838553993648, 195668363575483134, 977073310632294978, 4635352353992402420
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,21); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+20, 21)*Hypergeometric3F2([-20, -n, 1-n], [2, -n-20], 1).
a(n) = (538257874440/42!)*n*(n+1)*(124299255809188481393766275481600000000 + 328816118350366025460284915712000000000*n + 574832876343430323089683765002240000000*n^2 + 568701882574952901291417659454259200000*n^3 + 488065218731065719417147635733626880000*n^4 + 279248916577588134058859235459858432000*n^5 + 154338522148314741971664420691673088000*n^6 + 59227959344696504761998117194266705920*n^7 + 23633263646950664110615399338389323776*n^8 + 6557497087812561104289290673945292800*n^9 + 2014840321470361119845933104915307520*n^10 + 422701102488339328367203562820695040*n^11 + 104284338041749995423701069631220992*n^12 + 17025052804207868558201481522726400*n^13 + 3473748992461285895698788698610560*n^14 + 449827918639409055961252979192960*n^15 + 77602697715487702683123150572128*n^16 + 8071528554520601160114398770800*n^17 + 1197769342263854188918636742220*n^18 + 100831028153769404548233777380*n^19 + 13049306298068383096447853569*n^20 + 892237320110273631864787000*n^21 + 101851737197591285675901050*n^22 + 5654771034611195278152900*n^23 + 574799001272234774582445*n^24 + 25804389773082709176000*n^25 + 2354558801452942771200*n^26 + 84727960701572097480*n^27 + 6988357410140155794*n^28 + 198659321097901200*n^29 + 14901112723277580*n^30 + 327062325560360*n^31 + 22429224033778*n^32 + 366602803600*n^33 + 23094295940*n^34 + 264617940*n^35 + 15377517*n^36 + 110200*n^37 + 5930*n^38 + 20*n^39 + n^40).
G.f.: 2*x*(1 + 20*x + 400*x^2 + 3800*x^3 + 36100*x^4 + 216600*x^5 + 1299600*x^6 + 5523300*x^7 + 23474025*x^8 + 75116880*x^9 + 240374016*x^10 + 600935040*x^11 + 1502337600*x^12 + 3004675200*x^13 + 6009350400*x^14 + 9765194400*x^15 + 15868440900*x^16 + 21157921200*x^17 + 28210561600*x^18 + 31031617760*x^19 + 34134779536*x^20 + 31031617760*x^21 + 28210561600*x^22 + 21157921200*x^23 + 15868440900*x^24 + 9765194400*x^25 + 6009350400*x^26 + 3004675200*x^27 + 1502337600*x^28 + 600935040*x^29 + 240374016*x^30 + 75116880*x^31 + 23474025*x^32 + 5523300*x^33 + 1299600*x^34 + 216600*x^35 + 36100*x^36 + 3800*x^37 + 400*x^38 + 20*x^39 + x^40)/(1-x)^43. (End)
Previous Showing 21-30 of 33 results. Next