A334179
Number of dimer tilings of a 2*n x 6 Moebius strip.
Original entry on oeis.org
1, 18, 539, 17753, 603126, 20721019, 714790675, 24693540102, 853526336417, 29507528240963, 1020183543633762, 35272351950083641, 1219535200106522761, 42165342386915661378, 1457865351514568764211, 50405667966576581717969, 1742775306265709714234214, 60256436430143085819341347
Offset: 0
-
a[n_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[6, I*x/2], x]]; Array[a, 18, 0] (* Amiram Eldar, May 04 2021 *)
-
{a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(6, 1, I*x/2)))}
A334180
Number of dimer tilings of a 2*n x 8 Moebius strip.
Original entry on oeis.org
1, 47, 4271, 434657, 46069729, 4974089647, 541714928431, 59235304882177, 6489376893239297, 711542422708907311, 78049793235712789423, 8562932336475599244257, 939528644055272842890721, 103089508033934831216777903, 11311669427350891385087911471
Offset: 0
-
a[n_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[8, I*x/2], x]]; Array[a, 15, 0] (* Amiram Eldar, May 04 2021 *)
-
{a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(8, 1, I*x/2)))}
A334181
Number of dimer tilings of a 2*n x 10 Moebius strip.
Original entry on oeis.org
1, 123, 34276, 10894561, 3625549353, 1234496016491, 425588878897051, 147716667776449068, 51459452422736225401, 17962375573820654607091, 6276640725138515237851803, 2194525820018749279915303361, 767517569389298359121889024076, 268477550040900162034429991254323
Offset: 0
-
a[n_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[10, I*x/2], x]]; Array[a, 14, 0] (* Amiram Eldar, May 04 2021 *)
-
{a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(10, 1, I*x/2)))}
A334182
Number of dimer tilings of a 2*n x 12 Moebius strip.
Original entry on oeis.org
1, 322, 276119, 275770321, 289625349454, 312007855309063, 341133743251787719, 376320092633385077198, 417378876015895466713681, 464421220758849403137304663, 517771128105959394949223994178, 577920313480485996169789045855489, 645503767039127463811947619425652481
Offset: 0
-
a[n_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[12, I*x/2], x]]; Array[a, 13, 0] (* Amiram Eldar, May 04 2021 *)
-
{a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(12, 1, I*x/2)))}
A334183
Number of dimer tilings of a 2*n x 14 Moebius strip.
Original entry on oeis.org
1, 843, 2226851, 7009284232, 23313951730593, 79684937704014787, 276820366633357961907, 971684488369988888850993, 3433809783046699326165318697, 12187832583695135440208385490411, 43381711462091769247169214041784216, 154696550169813236996441805153918153313
Offset: 0
-
a[n_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[14, I*x/2], x]]; Array[a, 12, 0] (* Amiram Eldar, May 04 2021 *)
-
{a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(14, 1, I*x/2)))}