Original entry on oeis.org
1, -3, -7, -39, -315, -3243, -40167, -579159, -9514395, -175345083, -3582404487, -80368306119, -1964266364475, -51955106653323, -1478719724319207, -45062796853058679, -1463985729352297755, -50509695778598958363, -1844377821680825976327
Offset: 0
-
{a(n)=local(R,M=matrix(n+3,n+3,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n<0,0,R[n+3,3]))}
Original entry on oeis.org
1, 0, -3, -16, -104, -908, -9980, -130756, -1978044, -33864628, -646882700, -13637768276, -314550050684, -7879500818548, -213050486593260, -6184793428783156, -191870459680722524, -6335136849263878868, -221817478808912340620, -8209644712019737332436
Offset: 0
-
{a(n)=local(R,M=matrix(n+3,n+3,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n<0,0,sum(k=0,n,R[n+1,k+1])))}
Original entry on oeis.org
1, 4, 25, 208, 2152, 26524, 378700, 6142948, 111593932, 2244992404, 49561796380, 1191625266388, 31001841211852, 867899276874964, 26017959787456060, 831650920910208628, 28237504357447540972, 1014987937635390612724
Offset: 0
-
{a(n)=local(R,M=matrix(n+3,n+3,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-3); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n<0,0,sum(k=0,n,R[n+1,k+1])))}
A105630
Column 0 of triangle A105629, which is the matrix logarithm of triangle A105623.
Original entry on oeis.org
0, 1, 3, 17, 135, 1353, 16251, 226857, 3605775, 64288209, 1270969971, 27603549057, 653517822615, 16755529944729, 462601460800491, 13685474246611737, 431948067953729055, 14489465807596684449, 514794897939436455651
Offset: 0
-
{a(n)=local(L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i); return(if(n<0,0,L[n+1,1]/2))}
A105631
Row sums of triangle A105629, which is the matrix logarithm of triangle A105623.
Original entry on oeis.org
0, 1, 5, 27, 195, 1833, 21125, 286451, 4453859, 78031153, 1520668645, 32631020011, 764640901539, 19431070911513, 532315915981605, 15640217893829891, 490640673319698179, 16368499360721508833, 578693283962999831365
Offset: 0
-
{a(n)=local(L,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1); L=sum(i=1,#M,(-1)^(i-1)*(M-M^0)^i/i); return(if(n<0,0,sum(k=0,n,L[n+1,k+1])/2))}
Original entry on oeis.org
1, 3, 19, 167, 1831, 23843, 358339, 6097607, 115840951, 2430329603, 55812650419, 1392737182247, 37528377195271, 1086086115808163, 33600297897404899, 1106632150406054087, 38659524289511283991, 1427864216163041265923
Offset: 0
-
{a(n)=local(R,M=matrix(n+3,n+3,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n<0,0,R[n+3,3]))}
Original entry on oeis.org
1, 2, 7, 40, 324, 3336, 41192, 590480, 9623944, 175703056, 3552295752, 78802665120, 1903505233064, 49743146641616, 1398474578414632, 42092742475096960, 1350629892258170184, 46025643554111478576
Offset: 0
-
{a(n)=local(R,M=matrix(n+3,n+3,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n<0,0,sum(k=0,n,R[n+1,k+1])))}
Comments