A100472
Inverse modulo 2 modulo transform of 9^n.
Original entry on oeis.org
1, 8, 80, 640, 6560, 52480, 524800, 4198400, 43046720, 344373760, 3443737600, 27549900800, 282386483200, 2259091865600, 22590918656000, 180727349248000, 1853020188851840, 14824161510814720, 148241615108147200
Offset: 0
-
A106400:= func< n | 1 - 2*(&+Intseq(n, 2) mod(2)) >;
A100472:= func< n | (&+[A106400(n-j)*(Binomial(n,j) mod 2)*9^j: j in [0..n]]) >;
[A100472(n): n in [0..30]]; // G. C. Greubel, Apr 06 2023
-
A100472[n_]:= A100472[n]= Sum[(-1)^ThueMorse[n-j]*Mod[Binomial[n, j], 2]*9^j, {j,0,n}];
Table[A100472[n], {n,0,30}] (* G. C. Greubel, Apr 06 2023 *)
-
@CachedFunction
def A010060(n): return (bin(n).count('1')%2)
def A100472(n): return sum((-1)^A010060(n-k)*(binomial(n, k)%2)*9^k for k in range(n+1))
[A100472(n) for n in range(31)] # G. C. Greubel, Apr 06 2023
A381810
Array read by downward antidiagonals: A(n,k) is a generalization of odd columns of A125790 defined in Comments for n > 0, k >= 0.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 8, 36, 20, 10, 10, 64, 42, 84, 14, 12, 100, 72, 286, 100, 20, 14, 144, 110, 680, 322, 120, 26, 16, 196, 156, 1330, 744, 364, 140, 36, 18, 256, 210, 2300, 1430, 816, 406, 656, 46, 20, 324, 272, 3654, 2444, 1540, 888, 3396, 740, 60, 22, 400, 342, 5456, 3850, 2600, 1650, 10816, 3682, 840, 74
Offset: 1
Array begins:
===========================================================
n\k| 0 1 2 3 4 5 6 7 ...
---+-------------------------------------------------------
1 | 2, 4, 6, 8, 10, 12, 14, 16 ...
2 | 4, 16, 36, 64, 100, 144, 196, 256 ...
3 | 6, 20, 42, 72, 110, 156, 210, 272 ...
4 | 10, 84, 286, 680, 1330, 2300, 3654, 5456 ...
5 | 14, 100, 322, 744, 1430, 2444, 3850, 5712 ...
6 | 20, 120, 364, 816, 1540, 2600, 4060, 5984 ...
7 | 26, 140, 406, 888, 1650, 2756, 4270, 6256 ...
8 | 36, 656, 3396, 10816, 26500, 55056, 102116, 174336 ...
...
Cf.
A000123,
A001511,
A007814,
A053645,
A062383,
A070939,
A078121,
A106400,
A119387,
A125790,
A236206.
-
upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
A(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3); v1 = upto1(L+2); v2 = vector(L+2, i, vecsum(v1[i])); for(i=1, 2*m, v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); for(i=1, B, v3 = v2; for(j=1, L-i+1, v2[j+1] = sum(k=1, j+1, v1[j+1][k]*v3[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v2[A+2]
-
upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
upto2(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3, v4, v5); v1 = upto1(L+2); v2 = vector(L+2, i, 1); v3 = vector(m+1, i, 0); for(s=0, m, for(i=1, min(s+1,2), v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); v4 = v2; for(i=1, B, v5 = v4; for(j=1, L-i+1, v4[j+1] = sum(k=1, j+1, v1[j+1][k]*v5[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v3[s+1] = v4[A+2]); v3 \\ slightly modified version of the first program, some kind of memoization; generates A(n,k) for k=0..m
Comments