cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A107741 Smallest number m such that prime(n) = m + (digit sum of m), a(n)=0 if no such m exists.

Original entry on oeis.org

1, 0, 0, 0, 10, 11, 13, 14, 16, 19, 0, 32, 34, 35, 37, 0, 52, 53, 56, 58, 59, 71, 73, 76, 0, 91, 92, 94, 95, 97, 122, 124, 127, 128, 142, 143, 146, 149, 160, 163, 166, 167, 181, 182, 184, 185, 0, 215, 217, 218, 0, 232, 233, 238, 250, 253, 256, 257, 0, 271
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Comments

If a(n)>0 then: A000040(n)=A062028(a(n)) and A107740(n)>0.

Crossrefs

Programs

  • Haskell
    a107741 n = if null ms then 0 else head ms  where
       ms = [m | let p = a000040 n,
                 m <- [max 0 (p - 9 * a055642 p) .. p - 1], a062028 m == p]
    -- Reinhard Zumkeller, Sep 27 2014

Extensions

Data error corrected by Reinhard Zumkeller, Sep 27 2014

A320869 Primes such that p + digitsum(p, base 16) is again a prime.

Original entry on oeis.org

17, 19, 23, 29, 31, 53, 59, 89, 127, 149, 151, 157, 179, 181, 211, 223, 241, 251, 263, 269, 331, 359, 367, 397, 419, 431, 449, 457, 461, 463, 487, 541, 563, 571, 593, 599, 601, 631, 659, 661, 701, 733, 761, 769, 809, 811, 839, 907, 911, 941, 971, 997, 1049, 1087, 1109, 1171, 1201, 1237, 1283, 1289, 1291
Offset: 1

Views

Author

M. F. Hasler, Nov 06 2018

Keywords

Comments

Such primes exist only for an even base b. See A048519, A243441, A320866, A320867 and A320868 for the analog in base 10, 2, 4, 6 and 8, respectively. Also, as in base 10, there are no such primes when + is changed to -, see comment in A243442.

Examples

			17 = 16 + 1 = 11[16] (in base 16), and 17 + 1 + 1 = 19 is again prime.
		

Crossrefs

Cf. A047791, A048519 (base 10 analog), A048520, A006378, A107740, A243441 (base 2 analog: p + Hammingweight(p) is prime), A243442 (analog for p - Hammingweight(p)), A320866 (analog for base 4), A320867 (analog for base 6), A320868 (analog for base 8).

Programs

  • Maple
    digsum:= (n,b) -> convert(convert(n,base,b),`+`):
    select(p -> isprime(p) and isprime(p+digsum(p,16)), [2,seq(i,i=3..1000,2)]); # Robert Israel, Nov 07 2018
  • PARI
    forprime(p=1,1999,isprime(p+sumdigits(p,16))&&print1(p","))

A320882 Primes p such that repeated application of A062028 (add sum of digits) yields two other primes in a row: p, A062028(p) and A062028(A062028(p)) are all prime.

Original entry on oeis.org

11, 59, 101, 149, 167, 257, 277, 293, 367, 419, 479, 547, 617, 727, 839, 1409, 1559, 1579, 1847, 2039, 2129, 2617, 2657, 2837, 3449, 3517, 3539, 3607, 3719, 4217, 4637, 4877, 5689, 5779, 5807, 5861, 6037, 6257, 6761, 7027, 7489, 7517, 8039, 8741, 8969, 9371, 9377, 10667, 10847, 10937, 11257, 11279, 11299, 11657
Offset: 1

Views

Author

M. F. Hasler, Nov 06 2018

Keywords

Comments

"Iterates" the idea of A048519 (p and A062028(p) are prime), also considered in A048523, A048524, A048525, A048526, A048527. (This is the union of A048524, A048525, A048526, A048527 etc. A048525(1) = 277 = a(7).)

Crossrefs

Subsequence of A048519: p and A062028(p) are prime.
Cf. A047791, A048520, A006378, A107740, A243441 (p and p + Hammingweight(p) are prime), A243442 (analog for p - Hammingweight(p)).
Cf. A048523, ..., A048527, A320878, A320879, A320880: primes starting a chain of length 2, ..., 9 under iterations of A062028(n) = n + digit sum of n.

Programs

  • Maple
    f:= n -> n + convert(convert(n,base,10),`+`):
    filter:= proc(n) local x;
    if not isprime(n) then return false fi;
    x:= f(n);
    isprime(x) and isprime(f(x))
    end proc:
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Dec 17 2020
  • PARI
    is_A320882(n,p=n)=isprime(p=A062028(p))&&isprime(A062028(p))&&isprime(n) \\ Putting isprime(n) to the end is more efficient for the frequent case when the terms are already known to be prime.
    forprime(p=1,14999,isprime(q=A062028(p))&&isprime(A062028(q))&&print1(p","))
Previous Showing 11-13 of 13 results.