cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A348157 Table read by antidiagonals: T(n,k) = number of factorizations of (n,k) into one or two pairs (i,j) with i > 0, j > 0 (and if i=1 then j=1).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 3, 1, 3, 1, 0, 1, 1, 2, 1, 3, 1, 2, 0, 1, 1, 3, 1, 4, 1, 3, 2, 0, 1, 1, 2, 1, 3, 1, 3, 2, 2, 0, 1, 1, 3, 1, 5, 1, 4, 2, 3, 1, 0, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 0, 1, 1, 3, 1, 5, 1, 5, 2, 4, 1, 5, 1, 0, 1, 1, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 2
Offset: 1

Views

Author

Sean A. Irvine, Oct 03 2021

Keywords

Comments

(a,b)*(x,y) = (a*x,b*y); unit is (1,1).

Examples

			Table begins
  1 0 0 0 0 ...
  1 1 1 1 1 ...
  1 1 1 1 1 ...
  2 2 2 3 2 ...
  1 1 1 1 1 ...
  ...
(6,4) = (3,4)*(2,1) = (3,1)*(2,4) = (3,2)*(2,2), so a(6,4)=4.
		

Crossrefs

Cf. A108455 (any number of pairs), A108461. Column 1: A001055.

Programs

Formula

For n > 1, T(n,m) = ceiling((tau(n)-2)*tau(m)/2) + 1, where tau(n) = A000005(n). - Franklin T. Adams-Watters, Jun 23 2010.

A108456 Table read by antidiagonals: T(n,k) = number of partitions of (n,k) into pairs (i,j) with i>0, j>=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 3, 4, 5, 0, 1, 3, 6, 7, 7, 0, 1, 4, 8, 12, 12, 11, 0, 1, 4, 10, 16, 21, 19, 15, 0, 1, 5, 12, 23, 31, 36, 30, 22, 0, 1, 5, 15, 28, 45, 55, 58, 45, 30, 0, 1, 6, 17, 37, 60, 84, 94, 92, 67, 42, 0, 1, 6, 20, 44, 80, 115, 147, 153, 140, 97, 56, 0, 1, 7, 23
Offset: 0

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

(a,b)+(x,y)=(a+x,b+y); unit is (0,0).

Examples

			1 0 0 0 0 ...
1 1 1 1 1 ...
2 2 3 3 4 ...
3 4 6 8 10 ...
5 7 12 16 23 ...
(3,2)=(2,2)+(1,0)=(2,1)+(1,1)=(2,0)+(1,2)=(1,2)+(1,0)+(1,0)=(1,1)+(1,1)+(1,0), so a(3,2)=6.
		

Crossrefs

Cf. A108461, A108455. Columns 0-1: A000041, A000070. Main diagonal: A108457.

Formula

Euler transform of table whose g.f. is x/((1-x)*(1-y)).

A108465 Table read by antidiagonals: T(n,k) (n>=2) = number of factorizations of (n,k) into pairs (i,j) with i,j>1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

(a,b)*(x,y)=(a*x,b*y).

Examples

			1 1 1 1 1 ...
1 1 1 1 1 ...
1 1 2 1 2 ...
1 1 1 1 1 ...
1 1 2 1 3 ...
(8,6)=(4,3)*(2,2)=(4,2)*(2,3), so a(8,6)=3.
		

Crossrefs

Cf. A108461. Columns 4, 6: A038548 (n>1), A032741. Main diagonal: A108466.

Formula

Dirichlet g.f.: A(s, t) = exp(B(s, t)/1 + B(2*s, 2*t)/2 + B(3*s, 3*t)/3 + ...) where B(s, t) = (zeta(s)-1)*(zeta(t)-1).
Previous Showing 11-13 of 13 results.