cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A109000 Antidiagonal sums of square array A108998, in which row n equals the coordination sequence of B_n lattice.

Original entry on oeis.org

1, 1, 3, 11, 37, 133, 479, 1719, 6121, 21609, 75675, 263171, 909899, 3130963, 10730891, 36639987, 124528283, 420319907, 1403656123, 4615627555, 14868713515, 46702912307, 142489152555, 421113970835, 1203581558011
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2005

Keywords

Comments

Limit a(n+1)/a(n) ~ 3.3829757679..., real root of cubic (1+x+3*x^2-x^3). Compare to antidiagonal sums A108555 of square array A108553, in which row n equals the crystal ball sequence for D_n lattice.

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,sum(j=0,k, binomial(n-j-1,k-j)*(binomial(2*n-2*k+1,2*j)-2*(n-k)*binomial(n-k-1,j-1))))}

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k} C(n-j-1, k-j) * (C(2*n-2*k+1, 2*j)-2*(n-k)*C(n-k-1, j-1)).

A108557 Row sums of triangle A108556, in which row n equals the inverse binomial transform of the crystal ball sequence for D_n lattice.

Original entry on oeis.org

1, 3, 9, 63, 433, 2823, 17657, 107439, 642529, 3802167, 22357097, 130970271, 765564049, 4469342439, 26073165401, 152043343119, 886424978881, 5167271805207, 30119654732489, 175558462395135, 1023255914549617
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Limit a(n+1)/a(n) = 3+sqrt(8) = 5.82842712...

Crossrefs

Programs

  • PARI
    a(n)=local(A=vector(n+1,r,vector(n+1,c,if(r-1==0 || c-1==0,1,if(r-1==1,2*c-1, sum(j=0,c-1,binomial(r+c-j-2,c-j-1)*(binomial(2*r-2,2*j)-2*(r-1)*binomial(r-3,j-1)))))))); sum(k=0,n,polcoeff(subst(Ser(A[n+1]),x, x/(1+x))/(1+x),k))

Formula

G.f.: (1-9*x+19*x^2+33*x^3-80*x^4+12*x^5)/(1-12*x+46*x^2-60*x^3+9*x^4).
Previous Showing 11-12 of 12 results.