cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A109556 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 2.

Original entry on oeis.org

3, 5, 11, 17, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 677, 727, 733, 751, 941, 947, 971, 977, 991, 1013, 1033, 1063, 1097, 1103, 1117, 1123, 1181, 1187, 1217, 1223, 1231, 1283, 1291, 1321
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 2, Prime[n], {}], {n, 1, 400}]]

Extensions

Name edited and offset corrected by Amiram Eldar, Jun 02 2025

A109555 prime(k) for those k where floor(2*(((prime(k + 1) - prime(k))*PrimePi(k)) mod (8*k)) / k) = m with m = 0.

Original entry on oeis.org

2, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607, 1619, 1667, 1697, 1721, 1787, 1871, 1877, 1931, 1949, 1997, 2027, 2081, 2087, 2111, 2129, 2141, 2237, 2267, 2309, 2339, 2381
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 0, Prime[n], {}], {n, 1, 400}]]

Extensions

Offset changed and definition amended by Georg Fischer, Apr 06 2022

A109557 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 3.

Original entry on oeis.org

37, 43, 67, 151, 157, 167, 173, 233, 251, 257, 263, 271, 331, 353, 367, 373, 383, 433, 443, 503, 541, 557, 563, 571, 587, 593, 601, 607, 647, 653, 683, 701, 719, 743, 761, 911, 929, 983, 1109, 1163, 1193, 1373, 1439, 1523, 1559, 1571, 1733, 1823, 1979
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 3, Prime[n], {}], {n, 1, 400}]]

Extensions

Name edited and offset corrected by Amiram Eldar, Jun 02 2025

A109558 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 4.

Original entry on oeis.org

7, 13, 19, 47, 53, 61, 73, 83, 131, 359, 389, 401, 449, 479, 491, 691, 709, 787, 811, 829, 919, 1021, 1039, 1051, 1153, 1171, 1249, 1399, 1471, 1627, 1699, 1723, 1801, 1879, 2017, 2029, 2053, 2069, 2089, 2099, 2143, 2297, 2399, 2447, 2579, 2621
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 4, Prime[n], {}], {n, 1, 400}]]

Extensions

Name edited and offset corrected by Amiram Eldar, Jun 02 2025

A109559 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 5.

Original entry on oeis.org

23, 31, 283, 337, 409, 421, 547, 577, 631, 661, 797, 997, 1201, 1237, 1307, 1459, 1499, 1511, 1531, 1583, 1709, 1789, 1811, 1889, 2039, 2357, 2423, 2633, 2753, 2819, 2939, 3023, 3593, 3677, 3779, 3833, 3863, 4057, 4111, 4139, 4493, 4567, 4621, 4817, 4889, 4973
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 5, Prime[n], {}], {n, 1, 400}]]

Extensions

Name edited, offset corrected and more terms added by Amiram Eldar, Jun 02 2025

A109560 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 6.

Original entry on oeis.org

89, 139, 181, 241, 467, 509, 619, 773, 839, 863, 953, 1409, 1831, 1847, 1933, 2113, 2221, 2251, 2593, 2803, 2861, 3121, 3373, 3391, 3433, 3643, 3803, 3889, 4159, 4373, 4423, 4463, 4603, 4703, 4733, 5059, 5209, 5483, 5987, 6011, 6229, 6451, 6529, 6581, 6619, 6803
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 6, Prime[n], {}], {n, 1, 400}]]

Extensions

Name edited, offset corrected and more terms added by Amiram Eldar, Jun 02 2025

A109561 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 7.

Original entry on oeis.org

199, 211, 317, 1381, 1759, 1913, 2161, 2503, 3089, 3413, 3947, 5449, 5717, 5903, 6427, 7129, 8017, 9349, 9439, 9697, 10039, 10111, 10369, 10567, 11003, 11329, 11633, 11839, 12073, 12119, 13009, 13267, 16007, 16033, 16193, 16453, 16493, 16703, 16763, 16787, 17053
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 7, Prime[n], {}], {n, 1, 400}]]

Extensions

Name edited, offset corrected and more terms added by Amiram Eldar, Jun 02 2025

A109562 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 8.

Original entry on oeis.org

293, 1069, 1259, 1637, 2311, 2557, 3229, 3469, 3739, 3967, 4027, 4177, 4523, 4759, 5237, 6173, 6397, 6737, 7079, 7369, 7793, 8123, 8329, 9067, 11213, 11551, 12011, 12347, 13339, 14563, 14593, 14897, 16273, 16843, 18013, 18919, 20563, 21031, 21283, 21347, 21529
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 8, Prime[n], {}], {n, 1, 400}]]

Extensions

Name edited, offset corrected and more terms added by Amiram Eldar, Jun 02 2025

A109563 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 9.

Original entry on oeis.org

113, 523, 887, 1129, 1951, 2179, 5531, 5953, 8971, 10009, 10399, 10531, 10909, 13063, 13187, 13933, 13967, 14251, 14983, 16381, 16573, 17627, 18553, 18869, 27701, 27851, 29683, 32653, 34549, 37747, 40387, 41299, 42863, 45083, 45197, 46771, 46957, 47743, 47981, 49957
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 9, Prime[n], {}], {n, 1, 2000}]]

Extensions

Definition amended, offset changed and more terms from Georg Fischer, Apr 06 2022

A109564 prime(k) for those k where floor((2*(prime(k+1)-prime(k))*PrimePi(k) mod (8*k))/k) = m with m = 10.

Original entry on oeis.org

1669, 2477, 2971, 3137, 3271, 4297, 4831, 5119, 5351, 5749, 6491, 6917, 7253, 7759, 7963, 8389, 8893, 10799, 11743, 12163, 17257, 18803, 19087, 20443, 21433, 22193, 22307, 22817, 24281, 27143, 28351, 29881, 30593, 32261, 38393, 39461, 45013, 45779, 48907, 49559
Offset: 1

Views

Author

Roger L. Bagula, Jun 27 2005

Keywords

Crossrefs

Cf. A109556-A109569 for m = 2..15.

Programs

  • Mathematica
    a = Flatten[Table[If[Floor[2*Mod[(Prime[n + 1] - Prime[n])*PrimePi[n]/n, 8]] == 10, Prime[n], {}], {n, 1, 2000}]]

Extensions

Name edited, offset corrected and more terms added by Amiram Eldar, Jun 02 2025
Showing 1-10 of 14 results. Next