A109750
Admirable triangular numbers.
Original entry on oeis.org
66, 78, 120, 4095, 491536, 523776
Offset: 1
a(1) = 66 because 11*(11+1)/2 = 66 and 1+2+3+11+22+33-6 = 66.
-
admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2]; Select[Accumulate[Range[1024]], admQ] (* Amiram Eldar, Aug 05 2023 *)
A109766
Admirable numbers such that the subtracted divisor is prime.
Original entry on oeis.org
12, 40, 70, 88, 1888, 4030, 5830, 8925, 32128, 32445, 78975, 442365, 521728, 1848964, 8378368, 34359083008, 66072609790
Offset: 1
a(2) = 40 because 1+2+4+8+10+20-5 = 40 and the subtracted divisor is prime.
-
q[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && PrimeQ[ab/2]; Select[Range[2*10^6], q] (* Amiram Eldar, Aug 05 2023 *)
A110019
Numbers n such that n and its 10's complement are both admirable numbers, i.e., n and 10^k - n where k is the number of digits in n are admirable.
Original entry on oeis.org
12, 30, 70, 88, 97998, 98048, 99988, 111644, 130304, 869696, 888356, 9866958, 9908612, 38713866, 43672638, 56327362, 61286134, 97845666, 99916796, 3276615836, 3611536474, 6388463526, 6723384164, 9938713866, 9956658572
Offset: 1
A364726
Admirable numbers with more divisors than any smaller admirable number.
Original entry on oeis.org
12, 24, 84, 120, 672, 24384, 43065, 78975, 81081, 261261, 523776, 9124731, 13398021, 69087249, 91963648, 459818240, 39142675143, 51001180160
Offset: 1
-
admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && admQ[k], dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
-
isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0;}
lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && isadm(k), dm = d1; print1(k,", ")));}
Comments