cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A227354 Expansion of 2 * a(q) - a(q^2) in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, 12, -6, 12, 12, 0, -6, 24, -6, 12, 0, 0, 12, 24, -12, 0, 12, 0, -6, 24, 0, 24, 0, 0, -6, 12, -12, 12, 24, 0, 0, 24, -6, 0, 0, 0, 12, 24, -12, 24, 0, 0, -12, 24, 0, 0, 0, 0, 12, 36, -6, 0, 24, 0, -6, 0, -12, 24, 0, 0, 0, 24, -12, 24, 12, 0, 0, 24, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 08 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 12*q - 6*q^2 + 12*q^3 + 12*q^4 - 6*q^6 + 24*q^7 - 6*q^8 + 12*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^2]^3 / EllipticTheta[ 4, 0, q^6] + 3 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}];
    a[ n_] := If[ n < 1, Boole[n == 0], 6 Sum[ JacobiSymbol[ d, 3] (Mod[ n/d, 2] + 1), {d, Divisors@n}]]; (* Michael Somos, Jan 09 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 12 * sumdiv( n, d, kronecker( d, 3)) - 6 * sumdiv( 2*n, d, kronecker( d, 3)))};
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 12 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, (1 + 3*(-1)^e) / 4, if( p == 3, 1, if( p%6 == 1, e+1, (1 + (-1)^e) / 2 ))))))};

Formula

Expansion of (4 * b(q^4)^2 - 2 * b(q) * b(q^4) - b(q)^2) / b(q^2) in powers of q where b() is a cubic AGM theta function.
Expansion of phi(-q^2)^3 / phi(-q^6) + 12 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jan 09 2015
Expansion of theta_4(q^2)^3 / theta_4(q^6) + 3 * theta_2(q) * theta_2(q^3) in powers of q.
Moebius transform is period 6 sequence [ 12, -18, 0, 18, -12, 0, ...].
a(n) = 12 * b(n) where b(n) is multiplicative with b(2^e) = (1 + 3*(-1)^e) / 4, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
a(n) = A122859(8*n). a(2*n) = A122859(n). a(2*n + 1) = 12 * A033762(n). a(4*n) = a(n). a(4*n + 1) = 12 * A112604(n). a(4*n + 2) = -6 * A033762(n). a(4*n + 3) = 12 * A112605(n).
G.f.: 1 + 6 * Sum_{k>0} ((k mod 2) + 1) * x^k / (1 + x^k + x^(2*k)). - Michael Somos, Jan 09 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi*sqrt(3) = 5.441398... (A304656). - Amiram Eldar, Nov 23 2023

A253626 Expansion of psi(q^2) * f(q, q^2)^2 / f(q, q^5) in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 3, 1, 3, 0, 3, 2, 3, 1, 0, 0, 3, 2, 6, 0, 3, 0, 3, 2, 0, 2, 0, 0, 3, 1, 6, 1, 6, 0, 0, 2, 3, 0, 0, 0, 3, 2, 6, 2, 0, 0, 6, 2, 0, 0, 0, 0, 3, 3, 3, 0, 6, 0, 3, 0, 6, 2, 0, 0, 0, 2, 6, 2, 3, 0, 0, 2, 0, 0, 0, 0, 3, 2, 6, 1, 6, 0, 6, 2, 0, 1, 0, 0, 6, 0, 6
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + q + 3*q^2 + q^3 + 3*q^4 + 3*q^6 + 2*q^7 + 3*q^8 + q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 86); A[1] + A[2] + 3*A[3] + A[4] + 3*A[5];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ (-1)^ Quotient[ d, 3] {1, 1, 0}[[ Mod[d, 3, 1] ]] {1, 2}[[ Mod[n/d, 2, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q] QPochhammer[ -q^3] (QPochhammer[ q^3, q^6] QPochhammer[ -q^2, q^2])^4, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-12, d) + if(d%2, 0, 2 * kronecker(-12, d/2))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^3 / ( eta(x + A) * eta(x^2 + A) * eta(x^6 + A) * eta(x^12 + A) ), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3, if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of psi(q^2)^2 * phi(-q^3)^2 / (psi(-q) * psi(-q^3)) = f(q) * f(q^3) * (chi(-q^3) / chi(-q^2))^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (a(q) + 3*a(q^2) + 2*a(q^4)) / 6 = b(q^4) * (-b(q) + 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^3)^3 * eta(q^4)^3 / ( eta(q) * eta(q^2) * eta(q^6) * eta(q^12) ) in powers of q.
Euler transform of period 12 sequence [ 1, 2, -2, -1, 1, 0, 1, -1, -2, 2, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 2, 0, 0, -1, 0, 1, 0, 0, -2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) is multiplicative with a(0) = 1, a(2^e) = 3 if e > 0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (3 - (k mod 2)*2) * (q^k + q^(3*k)) / (1 + q^(2*k) + q^(4*k)).
G.f.: Product_{k>0} (1 - q^(3*k))^3 * (1 - q^(4*k))^3 / ( (1 - q^k) * (1 - q^(2*k)) * (1 - q^(6*k)) * (1 - q^(12*k)) ).
a(n) = (-1)^n * A253625(n). a(2*n) = A107760(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A122861(n). a(4*n + 1) = A112604(n). a(4*n + 2) = 3 * A033762(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0. a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n). a(12*n + 10) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Jan 21 2024

A262774 Expansion of psi(x^2) * phi(-x^3) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 1, -2, 0, -2, 1, 0, 0, -2, 0, 0, 3, 0, 2, -2, 0, 0, 2, 0, 1, 0, 0, -2, 2, 0, 0, -2, 0, -2, 1, 0, 2, -4, 0, 0, 0, 0, 0, -2, 0, 0, 3, 0, 0, -2, 0, -2, 2, 0, 2, 0, 0, 0, 4, 0, 1, -2, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 4, -2, 0, 0, 1, 0, 0, -4, 0, -2, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 01 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x^2 - 2*x^3 - 2*x^5 + x^6 - 2*x^9 + 3*x^12 + 2*x^14 - 2*x^15 + ...
G.f. = q + q^9 - 2*q^13 - 2*q^21 + q^25 - 2*q^37 + 3*q^49 + 2*q^57 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 4 n + 1, KroneckerSymbol[ -3, #]&]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 4, 0, x^3] / (2 x^(1/4)), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^2 QPochhammer[ x^4]^2 / ( QPochhammer[ x^2]  QPochhammer[ x^6]), {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 5, Mod[#, 2], Mod[#, 6] == 5, 1 - Mod[#2, 2], True, (#2  + 1) KroneckerSymbol[ 6, #]^#2] & @@@ FactorInteger @ (4 n + 1))];
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv(4*n + 1, d, kronecker( -3, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A)^2 / (eta(x^2 + A) * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(4*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, p%2, p%6 == 1, (e+1) * if( p%24 == 1 || p%24 == 19, 1, (-1)^e), 1-e%2 )))};

Formula

Expansion of q^(-1/4) * eta(q^3)^2 * eta(q^4)^2 / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 0, 1, -2, -1, 0, 0, 0, -1, -2, 1, 0, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (192 t)) = 192^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A112604(n). a(2*n) = A112606(n). a(2*n + 1) = -2 * A112607(n-1). a(3*n + 1) = 0.
a(6*n) = A131961(n). a(6*n + 2) = A112608(n). a(6*n + 3) = -2 * A131963(n). a(6*n + 5) = -2 * A112609(n).

A193514 Expansion of phi(-q)^2 * phi(-q^9) / phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 4, 2, -4, 0, 4, -8, 4, 2, 0, 0, 2, -8, 8, 0, -4, 0, 4, -8, 0, 4, 0, 0, 4, -4, 8, 2, -8, 0, 0, -8, 4, 0, 0, 0, 2, -8, 8, 4, 0, 0, 8, -8, 0, 0, 0, 0, 2, -12, 4, 0, -8, 0, 4, 0, 8, 4, 0, 0, 0, -8, 8, 4, -4, 0, 0, -8, 0, 0, 0, 0, 4, -8, 8, 2, -8, 0, 8, -8, 0, 2, 0, 0, 4, 0, 8, 0, 0, 0, 0, -16, 0, 4, 0, 0, 4, -8
Offset: 0

Views

Author

Michael Somos, Jul 29 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*q + 4*q^2 + 2*q^3 - 4*q^4 + 4*q^6 - 8*q^7 + 4*q^8 + 2*q^9 + 2*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2 EllipticTheta[ 4, 0, q^9] / EllipticTheta[ 4, 0, q^3], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * if( n%3==1, -2, 1) * sumdiv( n, d, -(-1)^d * kronecker( -3, d)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^6 + A) * eta(x^9 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^18 + A)), n))};

Formula

Expansion of (-2 * a(q) +2 * a(q^2) +3 * a(q^3)) / 3 = b(q) * (b(q) + 2 * b(q^2)) / (3 * b(q^2)) in powers of q where a(), b() are cubic AGM functions.
Expansion of eta(q)^4 * eta(q^6) * eta(q^9)^2 / (eta(q^2)^2 * eta(q^3)^2 * eta(q^18)) in powers of q.
Euler transform of period 18 sequence [ -4, -2, -2, -2, -4, -1, -4, -2, -4, -2, -4, -1, -4, -2, -2, -2, -4, -2, ...].
Moebius transform is period 18 sequence [ -4, 8, 6, -8, 4, -6, -4, 8, 0, -8, 4, 6, -4, 8, -6, -8, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 432^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A193426.
a(3*n) = A123330(n). a(3*n + 1) = -4 * A033687(n). a(6*n + 1) = -4 * A097195(n). a(6*n + 2) = 4 * A033687(n). a(6*n + 3) = 2 * A033762(n). a(6*n + 4) = 4 * A033687(n). a(8*n + 2) = 4 * A112604(n). a(8*n + 6) = 4 * A112605(n). a(6*n + 5) = 0. a(4*n) = a(n).

A253623 Expansion of phi(q) * f(q, q^2)^2 / f(q^2, q^4) in powers of q where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 6, 4, 0, 0, 6, 8, 6, 4, 0, 0, 0, 8, 12, 0, 0, 0, 6, 8, 0, 8, 0, 0, 6, 4, 12, 4, 0, 0, 0, 8, 6, 0, 0, 0, 0, 8, 12, 8, 0, 0, 12, 8, 0, 0, 0, 0, 0, 12, 6, 0, 0, 0, 6, 0, 12, 8, 0, 0, 0, 8, 12, 8, 0, 0, 0, 8, 0, 0, 0, 0, 6, 8, 12, 4, 0, 0, 12, 8, 0, 4, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 4*x + 6*x^2 + 4*x^3 + 6*x^6 + 8*x^7 + 6*x^8 + 4*x^9 + 8*x^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 83); A[1] + 4*A[2] + 6*A[3] + 4*A[4];
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 + 2 Sum[ (1 + Mod[k, 2]) q^k / (1 - q^k + q^(2 k)), {k, n}], {q, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2 EllipticTheta[ 4, 0, q^3]^2 / (EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^6]), {q, 0, n}];
    a[ n_] := If[ n < 1, Boole[n == 0], 2 (-1)^n Sum[(-1)^(n/d) {2, -1, 0, 1, -2, 0}[[ Mod[ d, 6, 1] ]], {d, Divisors @ n}]];
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, (n/d%2 + 1) * (-1)^(d\3) * (d%3>0) ))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^n * sumdiv(n, d, (-1)^(n/d) * [0, 2, -1, 0, 1, -2][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^4 * eta(x^12 + A) / (eta(x + A)^4 * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 4 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3/2*(e%2), if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of phi(q)^2 * phi(-q^3)^2 / (phi(-q^2) * phi(-q^6)) = psi(q) * psi(-q^3) * (chi(q) * chi(-q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of (2*a(q) + 3*a(q^2) - 2*a(q^4)) / 3 = (b(q) - 2*b(q^4)) * (b(q) - 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^2)^8 * eta(q^3)^4 * eta(q^12) / (eta(q)^4 * eta(q^4)^3 * eta(q^6)^4) in powers of q.
Euler transform of period 12 sequence [ 4, -4, 0, -1, 4, -4, 4, -1, 0, -4, 4, -2, ...].
Moebius transform is period 12 sequence [ 4, 2, 0, -6, -4, 0, 4, 6, 0, -2, -4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 48^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A253625.
a(n) = 4*b(n) where b() is multiplicative with b(2^e) = (3/4) * (1 - (-1)^e) if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (1 + (k mod 2)) * q^k / (1 - q^k + q^(2*k)).
G.f.: Product_{k>0} (1 + q^k) * (1 - q^(2*k)) * (1 - q^(3*k)) * (1 + q^(6*k)) / ((1 + q^(2*k)) * (1 - q^k + q^(2*k)))^3.
a(n) = (-1)^n * A244339(n). a(2*n) = A004016(n). a(2*n + 1) = 4 * A033762(n). a(3*n) = a(n). a(6*n + 1) = 4 * A097195(n). a(6*n + 2) = 6 * A033687(n). a(6*n + 4) = a(6*n = 5) = 0.
a(12*n + 1) = 4 * A123884(n). a(12*n + 2) = 6 * A097195(n). a(12*n + 3) = 4 * A112604(n). a(12*n + 7) = 8 * A121361(n). a(12*n + 9) = 4 * A112605(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Dec 30 2023

A028613 Expansion of theta_3(q) * theta_3(q^12) + theta_2(q) * theta_2(q^12) in powers of q^(1/4).

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 2*x^4 + 4*x^13 + 2*x^16 + 4*x^21 + 2*x^36 + 4*x^37 + 2*x^48 + ...
G.f. = 1 + 2*q + 4*q^(13/4) + 2*q^4 + 4*q^(21/4) + 2*q^9 + 4*q^(37/4) + 2*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^12] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^12], {x, 0, n/4}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) * eta(x^96+A))^5 / (eta(x^4 + A) * eta(x^16 + A) * eta(x^48 + A) * eta(x^192 + A))^2 + 4*x^13 * (eta(x^16 + A) * eta(x^192 + A))^2 / (eta(x^8 + A) * eta(x^96 + A)), n))};

Formula

a(4*n + 2) = a(4*n + 3) = a(8*n + 1) = a(16*n + 8) = a(16*n + 12) = 0. - Michael Somos, Feb 22 2015
a(8*n + 5) = 4*A112607(n-1). a(16*n) = A033716(n). a(16*n + 4) = 2*A112604(n). - Michael Somos, Feb 22 2015
Previous Showing 21-26 of 26 results.