cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A137608 Expansion of (1 - psi(-q)^3 / psi(-q^3)) / 3 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 0, -1, 2, -1, 1, 0, 0, -1, 2, -2, 0, -1, 0, -1, 2, 0, 2, 0, 0, -1, 1, -2, 1, -2, 0, 0, 2, -1, 0, 0, 0, -1, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, -1, 3, -1, 0, -2, 0, -1, 0, -2, 2, 0, 0, 0, 2, -2, 2, -1, 0, 0, 2, 0, 0, 0, 0, -1, 2, -2, 1, -2, 0, -2, 2, 0, 1, 0, 0, -2, 0, -2, 0, 0, 0, 0, 4, 0, 2, 0, 0, -1, 2, -3, 0, -1, 0, 0, 2, -2, 0
Offset: 1

Views

Author

Michael Somos, Jan 29 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - q^2 + q^3 - q^4 - q^6 + 2*q^7 - q^8 + q^9 - q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[n, KroneckerSymbol[ -12, #] &]]; (* Michael Somos, May 06 2015 *)
    a[ n_] := SeriesCoefficient[ (4 + EllipticTheta[ 2, Pi/4, q^(1/2)]^3 / EllipticTheta[ 2, Pi/4, q^(3/2)]) / 6, {q, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -2, 0, 0, -1, 0, 1, 0, 0, 2, -1, 0}[[Mod[#, 12, 1]]] &]]; (* Michael Somos, May 07 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker(-12, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A))) / 3, n))}; /* Michael Somos, May 06 2015 */

Formula

Expansion of (1 - b(q^2)^2 / b(-q) ) / 3 in powers of q where b() is a cubic AGM function.
Moebius transform is period 12 sequence [ 1, -2, 0, 0, -1, 0, 1, 0, 0, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 unless e=0, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (-1)^k * (x^k + x^(3*k)) / (1 + x^k + x^(2*k)).
G.f.: ( Sum_{k>0} x^(6*k-5) / ( 1 + x^(6*k-5) ) - x^(6*k-1) / ( 1 + x^(6*k-1) )).
a(n) = -(-1)^n * A035178(n). -3 * a(n) = A132973(n) unless n = 0.
a(2*n) = -A035178(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A227696(n).
a(4*n + 1) + A112604(n). a(4*n + 3) = A112605(n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n-1). a(8*n + 7) = 2 * A112609(n).
a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n).

A260941 Expansion of phi(-x) * phi(x^6) / chi(-x^3) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 1, 0, 0, 3, -4, 0, 2, -2, 0, 2, 0, 0, 1, -4, 0, 0, 0, 0, 3, 0, 0, 2, -4, 0, 4, -2, 0, 2, 0, 0, 0, -8, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 2, -4, 0, 2, -6, 0, 2, 0, 0, 4, -4, 0, 0, -4, 0, 1, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 1, -4, 0, 0, -4
Offset: 0

Views

Author

Michael Somos, Aug 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^3 + 3*x^6 - 4*x^7 + 2*x^9 - 2*x^10 + 2*x^12 + x^15 + ...
G.f. = q - 2*q^9 + q^25 + 3*q^49 - 4*q^57 + 2*q^73 - 2*q^81 + 2*q^97 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 3, 0, x^6] QPochhammer[ -x^3, x^3], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^12 + A)^5 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) * eta(x^24 + A)^2), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q)^2*eta(q^12)^5/(eta(q^2)*eta(q^3)*eta(q^6)*eta(q^24)^2)) \\ Altug Alkan, Aug 01 2018

Formula

Expansion of q^(-1/8) * eta(q)^2 * eta(q^12)^5 / (eta(q^2) * eta(q^3) * eta(q^6) * eta(q^24)^2) in powers of q.
Euler transform of period 24 sequence [ -2, -1, -1, -1, -2, 1, -2, -1, -1, -1, -2, -4, -2, -1, -1, -1, -2, 1, -2, -1, -1, -1, -2, -2, ...].
a(3*n) = A131961(n). a(3*n + 1) = -2 * A112608(n). a(3*n + 2) = 0.

A262726 Expansion of phi(-x) * psi(x^6) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 0, 2, 0, 1, -2, 0, -2, 2, 0, 0, 0, 0, -2, 2, 0, 1, -2, 0, 0, 4, 0, 0, -2, 0, -2, 0, 0, 0, -2, 0, 0, 2, 0, 3, -2, 0, 0, 2, 0, 2, -2, 0, -2, 0, 0, 0, -2, 0, 0, 2, 0, 2, -2, 0, 0, 0, 0, 1, -4, 0, 0, 4, 0, 0, -2, 0, -2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 28 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 2*x^4 + x^6 - 2*x^7 - 2*x^9 + 2*x^10 - 2*x^15 + 2*x^16 + ...
G.f. = q^3 - 2*q^7 + 2*q^19 + q^27 - 2*q^31 - 2*q^39 + 2*q^43 - 2*q^63 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 4 n + 3, KroneckerSymbol[ -3, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^3] / (2 x^(3/4)), {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 5, Mod[#, 2], Mod[#, 6] == 5, 1 - Mod[#2, 2], True, (#2  + 1) KroneckerSymbol[ 6, #]^#2] & @@@ FactorInteger @ (4 n + 3))]; (* Michael Somos, Oct 01 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv(4*n + 3, d, kronecker(-3, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^12 + A)^2 / (eta(x^2 + A) * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(4*n + 3); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, p%2, p%6 == 1, (e+1) * if( p%24 == 1 || p%24 == 19, 1, (-1)^e), 1-e%2 )))}; /* Michael Somos, Oct 01 2015 */

Formula

Expansion of q^(-3/4) * eta(q)^2 * eta(q^12)^2 / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [-2, -1, -2, -1, -2, 0, -2, -1, -2, -1, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (192 t)) = 192^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A112605(n). -2 * a(n) = A138270(2*n + 1).
a(2*n) = A112608(n). a(2*n + 1) = -2 * A112609(n). a(3*n + 2) = 0.
a(n) = A262780(2*n + 1). - Michael Somos, Oct 01 2015

A262774 Expansion of psi(x^2) * phi(-x^3) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 1, -2, 0, -2, 1, 0, 0, -2, 0, 0, 3, 0, 2, -2, 0, 0, 2, 0, 1, 0, 0, -2, 2, 0, 0, -2, 0, -2, 1, 0, 2, -4, 0, 0, 0, 0, 0, -2, 0, 0, 3, 0, 0, -2, 0, -2, 2, 0, 2, 0, 0, 0, 4, 0, 1, -2, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 4, -2, 0, 0, 1, 0, 0, -4, 0, -2, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 01 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x^2 - 2*x^3 - 2*x^5 + x^6 - 2*x^9 + 3*x^12 + 2*x^14 - 2*x^15 + ...
G.f. = q + q^9 - 2*q^13 - 2*q^21 + q^25 - 2*q^37 + 3*q^49 + 2*q^57 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 4 n + 1, KroneckerSymbol[ -3, #]&]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 4, 0, x^3] / (2 x^(1/4)), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^2 QPochhammer[ x^4]^2 / ( QPochhammer[ x^2]  QPochhammer[ x^6]), {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 5, Mod[#, 2], Mod[#, 6] == 5, 1 - Mod[#2, 2], True, (#2  + 1) KroneckerSymbol[ 6, #]^#2] & @@@ FactorInteger @ (4 n + 1))];
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv(4*n + 1, d, kronecker( -3, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A)^2 / (eta(x^2 + A) * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(4*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, p%2, p%6 == 1, (e+1) * if( p%24 == 1 || p%24 == 19, 1, (-1)^e), 1-e%2 )))};

Formula

Expansion of q^(-1/4) * eta(q^3)^2 * eta(q^4)^2 / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 0, 1, -2, -1, 0, 0, 0, -1, -2, 1, 0, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (192 t)) = 192^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A112604(n). a(2*n) = A112606(n). a(2*n + 1) = -2 * A112607(n-1). a(3*n + 1) = 0.
a(6*n) = A131961(n). a(6*n + 2) = A112608(n). a(6*n + 3) = -2 * A131963(n). a(6*n + 5) = -2 * A112609(n).
Previous Showing 11-14 of 14 results.