A113085
Number of 3-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 2) and t_{i+1} <= 3*t_i for 1
Original entry on oeis.org
1, 1, 3, 21, 331, 11973, 1030091, 218626341, 118038692523, 166013096151621, 619176055256353291, 6207997057962300681573, 169117528577725378851523691, 12626174170113987651028630856581, 2602022118010488151483064379958957003
Offset: 0
The tree of 3-tournament sequences of odd integer
descendents of a node labeled (1) begins:
[1]; generation 1: 1->[3]; generation 2: 3->[5,7,9];
generation 3: 5->[7,9,11,13,15], 7->[9,11,13,15,17,19,21],
9->[11,13,15,17,19,21,23,25,27]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113089,
A113096,
A113098,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return(M[n+1,1])}
A113103
Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k) in the tree of 5-tournament sequences.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 85, 16, 3, 1, 0, 4985, 440, 33, 4, 1, 0, 1082905, 43600, 1251, 56, 5, 1, 0, 930005021, 16698560, 173505, 2704, 85, 6, 1, 0, 3306859233805, 26098464448, 94216515, 481376, 4985, 120, 7, 1, 0, 50220281721033905
Offset: 0
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,5,16,33,56,85,120,161,208,261,320,...
0,85,440,1251,2704,4985,8280,12775,18656,26109,...
0,4985,43600,173505,481376,1082905,2122800,3774785,6241600,...
0,1082905,16698560,94216515,337587520,930005021,2156566656,...
0,930005021,26098464448,210576669921,978162377600,...
0,3306859233805,172513149018752,2002383115518243,...
0,50220281721033905,4938593053649344000,82856383278525698433,...
-
/* Generalized Cook-Kleber Recurrence */
{T(n,k,q=5)=if(n==0,1,if(n<0||k<=0,0,if(n==1,k, if(n>=k,sum(j=1,k,T(n-1,k+(q-1)*j)), sum(j=1,n+1,(-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
-
/* Matrix Power Recurrence (Paul D. Hanna) */
{T(n,k,q=5)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); (M^k)[n+1,1]}
for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
A113080
Square table, read by antidiagonals, where T(n,k) equals the number of k-tournament sequences of length n for k>=1, with T(0,k) = 1 for k>=1 and T(n,1) = 0 for n>0.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 7, 10, 3, 1, 0, 41, 114, 27, 4, 1, 0, 397, 2970, 693, 56, 5, 1, 0, 6377, 182402, 52812, 2704, 100, 6, 1, 0, 171886, 27392682, 12628008, 481376, 8125, 162, 7, 1, 0, 7892642, 10390564242, 9924266772, 337587520, 2918750, 20502, 245, 8
Offset: 1
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,2,10,27,56,100,162,245,352,486,650,...
0,7,114,693,2704,8125,20502,45619,92288,173259,...
0,41,2970,52812,481376,2918750,13399506,50216915,...
0,397,182402,12628008,337587520,4976321250,48633051942,...
0,6377,27392682,9924266772,978162377600,42197834315625,...
0,171886,10390564242,26507035453923,12088945462984960,...
0,7892642,10210795262650,246323730279500082,...
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^k)[r-1,c-1])+(M^k)[r-1,c]))); return((M^(k-1))[n+1,1])}
Comments