A114153
Triangle, read by rows, given by the product R^-1*P^3 using triangular matrices P=A113370, R=A113389.
Original entry on oeis.org
1, 0, 1, 0, 6, 1, 0, 48, 12, 1, 0, 605, 186, 18, 1, 0, 11196, 3892, 414, 24, 1, 0, 280440, 106089, 12021, 732, 30, 1, 0, 8981460, 3620379, 429345, 27152, 1140, 36, 1, 0, 353283128, 149740555, 18386361, 1196910, 51445, 1638, 42, 1
Offset: 0
Triangle R^-1*P^3 begins:
1;
0,1;
0,6,1;
0,48,12,1;
0,605,186,18,1;
0,11196,3892,414,24,1;
0,280440,106089,12021,732,30,1; ...
Compare to R^2 (A113392):
1;
6,1;
48,12,1;
605,186,18,1;
11196,3892,414,24,1;
280440,106089,12021,732,30,1; ...
Thus R^-1*P^3 equals R^2 shift right one column.
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1*P^3)[n+1,k+1]
A114159
Triangle, read by rows, equal to the matrix inverse of R=A113389.
Original entry on oeis.org
1, -3, 1, 3, -6, 1, 35, -12, -9, 1, 396, -29, -45, -12, 1, 6237, 582, -462, -96, -15, 1, 131613, 30684, -6408, -1534, -165, -18, 1, 3518993, 1300810, -96705, -34020, -3515, -252, -21, 1, 114244366, 59124226, -764835, -944334, -102180, -6675, -357, -24, 1
Offset: 0
Triangle R^-1 begins:
1;
-3,1;
3,-6,1;
35,-12,-9,1;
396,-29,-45,-12,1;
6237,582,-462,-96,-15,1;
131613,30684,-6408,-1534,-165,-18,1;
3518993,1300810,-96705,-34020,-3515,-252,-21,1;
...
Triangle R^-2 begins:
1;
-6,1;
24,-12,1;
79,30,-18,1;
324,356,18,-24,1;
42,5523,615,-12,-30,1;
-79346,112533,16731,640,-60,-36,1;
...
-
{T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1)[n+1,k+1]}
A113388
Column 0 of triangle A113387, also equals column 0 of A113389^2.
Original entry on oeis.org
1, 6, 48, 605, 11196, 280440, 8981460, 353283128, 16567072675, 905357065354, 56632746126107, 3997082539456084, 314584709388906568, 27340439653453247728, 2602372304420672868499, 269388182085308601450047
Offset: 0
-
a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(3*c-1))[r-c+1,1]))^3)[n+1,1]
Original entry on oeis.org
1, 4, 22, 212, 3255, 70777, 2022897, 72375484, 3130502129, 159476810183, 9376968779265, 626244735454991, 46892450411406465, 3894861818247549265, 355651177699555693544, 35432761283736539730108
Offset: 0
-
a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(3*c-1))[r-c+1,1]))^2)[n+1,1]
Comments