cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A114058 Start of record gap in even semiprimes (A100484).

Original entry on oeis.org

4, 6, 14, 46, 178, 226, 1046, 1774, 2258, 2654, 19102, 31366, 39218, 62794, 311842, 721306, 740522, 984226, 2699066, 2714402, 4021466, 9304706, 34103414, 41662646, 94653386, 244329494, 379391318, 383825566, 774192266
Offset: 1

Views

Author

Jonathan Vos Post, Feb 02 2006

Keywords

Comments

5 of the first 6 values of record gaps in even semiprimes are also record merits = (A100484(k+1)-A100484(k))/log_10(A100484(k)), namely: (6 - 4) / log_10(4) = 3.32192809; (10 - 6) / log_10(6) = 5.14038884; (22 - 14) / log_10(14) = 6.98002296; (58 - 46) / log_10(46) = 7.21692586; (254 - 226) / log_10(226) = 11.8940995. It is easy to prove that there are gaps of arbitrary length in even semiprimes (A100484), as 2*(n!+2), 2*(n!+3), 2*(n!+4), ..., 2*(n!+n) gives (n-1) consecutive even nonsemiprimes. Can we prove that there are gaps of arbitrary length in odd semiprimes (A046315) and in semiprimes (A001358)?
For every n, a(n) = 2*A002386(n). - John W. Nicholson, Jul 26 2012

Examples

			gap[a(1)] = A100484(2)-A100484(1) = 6 - 4 = 2.
gap[a(2)] = A100484(3)-A100484(2) = 10 - 6 = 4.
gap[a(3)] = A100484(5)-A100484(4) = 22 - 14 = 8.
gap[a(4)] = A100484(10)-A100484(9) = 58 - 46 = 12.
gap[a(5)] = A100484(25)-A100484(24) = 194 - 178 = 16.
gap[a(6)] = A100484(31)-A100484(30) = 254 - 226 = 28.
		

Crossrefs

Cf. A001358, A046315, A065516, A085809, A100484, A114412, A114021. Maximal gap small prime A002386.

Programs

  • Mathematica
    f[n_] := Block[{k = n + 2}, While[ Plus @@ Last /@ FactorInteger@k != 2, k += 2]; k]; lst = {}; d = 0; a = b = 4; Do[{a, b} = {b, f[a]}; If[b - a > d, d = b - a; AppendTo[lst, a]], {n, 10^8}]; lst (* Robert G. Wilson v *)

Formula

a(n) = A100484(k) such that A100484(k+1)-A100484(k) is a record.

Extensions

a(7)-a(25) from Robert G. Wilson v, Feb 03 2006
a(26)-a(31) from Donovan Johnson, Mar 14 2010

A114417 Records in 7-almost prime gaps, ordered by merit.

Original entry on oeis.org

64, 96, 112, 168, 210, 280
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114407 and A046308:
n A114407(n) A114407(n)/log(A046308(n))
1 64 64/log 128 = 30.371914
2 96 96/log 192 = 42.0443868
3 32 32/log 288 = 13.0113433
4 112 112/log 320 = 44.7079021
5 16 16/log 432 = 6.07099172
6 32 32/log 448 = 12.0696509
7 168 168/log 480 = 62.6575474
8 24 24/log 648 = 8.53614076
		

Crossrefs

Formula

a(n) = Records in A114417(n)/log(A046308(n)) = Records in (A046308(n+1) - A046308(n))/log(A046308(n)).

Extensions

a(5)-a(6) from Donovan Johnson, Feb 17 2010

A114418 Records in 8-almost prime gaps ordered by merit.

Original entry on oeis.org

128, 192, 224, 336, 420, 560
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2005

Keywords

Examples

			Records defined in terms of A114408 and A046310:
n A114418(n) A114418(n)/log(A046310(n)).
1 128 128/log 256 = 53.1508495
2 192 192/log 384 = 74.2938824
3 64 64/log 576 = 23.1848568
4 224 224/log 640 = 79.8238182
5 32 32/log 864 = 10.8972758
6 64 64/log 896 = 21.6779549
7 336 336/log 960 = 112.665809
8 48 48/log 1296 = 15.4211665
22 420 420/log 2496 = 123.629603
		

Crossrefs

Formula

a(n) = records in A114418(n)/log(A046310(n)) = records in (A046310(n+1) - A046310(n))/log(A046310(n)).

Extensions

Offset corrected and a(6) from Donovan Johnson, Feb 17 2010

A114413 Records in 3-almost prime gaps ordered by merit.

Original entry on oeis.org

4, 6, 12, 58, 83
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114403 and A014612:
  n  A114403(n)  A114403(n)/log_10(A014612(n))
  =  ==========  =============================
  1      4       4/log_10(8)   = 4.42923746
  2      6       6/log_10(12)  = 5.55977045
  3      2       2/log_10(18)  = 1.59327954
  4      7       7/log_10(20)  = 5.38035251
  5      1       1/log_10(27)  = 0.698634425
  6      2       2/log_10(28)  = 1.38201907
  7      12      12/log_10(30) = 8.12390991
  ...
  19     14      14/log_10(78) = 7.3992072
		

Crossrefs

Formula

a(n) = records in A114403(n)/log_10(A014612(n)) = records in (A014612(n+1) - A014612(n))/log_10(A014612(n)).

Extensions

a(4)-a(5) from Donovan Johnson, Feb 17 2010

A114416 Records in 6-almost prime gaps ordered by merit.

Original entry on oeis.org

32, 48, 56, 84, 105, 140
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			Records defined in terms of A114406 and A046306:
n A114406(n) A114406(n)/log(A046306(n)).
1 32 32/log 64 = 17.7169498
2 48 48/log 96 = 24.2146479
3 16 16/log 144 = 7.41302726
4 56 56/log 160 = 25.4069653
5 8 8/log 216 = 3.42692589
6 16 16/log 224 = 6.80779215
7 84 84/log 240 = 35.2909853
8 12 12/log 324 = 4.77983862
...
22 105 105/log 624 = 37.5646032
		

Crossrefs

Formula

a(n) = records in A114406(n)/log(A046306(n)) = records in (A046306(n+1) - A046306(n))/log(A046306(n)).

Extensions

a(6) from Donovan Johnson, Feb 17 2010
Previous Showing 11-15 of 15 results.