cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A331771 a(n) = Sum_{-n

Original entry on oeis.org

0, 12, 56, 172, 400, 836, 1496, 2564, 4080, 6212, 8984, 12788, 17488, 23644, 31112, 40148, 50912, 64172, 79448, 97868, 118912, 143108, 170504, 202500, 238080, 278700, 323864, 374508, 430272, 493380, 561832, 638692, 722656, 814604, 914360, 1023428
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2020

Keywords

Comments

a(n) = 8*A332612(n)+4*n*(n-1)+4*(n-1)^2. Also adding 2 to the terms of the present sequence gives (essentially) A114146. - N. J. A. Sloane, Mar 14 2020

References

  • Koplowitz, Jack, Michael Lindenbaum, and A. Bruckstein. "The number of digital straight lines on an N* N grid." IEEE Transactions on Information Theory 36.1 (1990): 192-197. (See I(n).)

Crossrefs

When divided by 4 this becomes A115005, so this is a ninth sequence to add to the following list.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n.
Cf. A332612.

Programs

  • Maple
    VR := proc(m,n,q) local a,i,j; a:=0;
    for i from -m+1 to m-1 do for j from -n+1 to n-1 do
    if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
    [seq(VR(n,n,1),n=1..50)];
  • Mathematica
    a[n_] := Sum[Boole[GCD[i, j] == 1] (n - Abs[i]) (n - Abs[j]), {i, -n + 1, n - 1}, {j, -n + 1, n - 1}];
    Array[a, 36] (* Jean-François Alcover, Apr 19 2020 *)
  • Python
    from sympy import totient
    def A331771(n): return 4*((n-1)*(2*n-1)+sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n))) # Chai Wah Wu, Aug 17 2021

Formula

a(n) = 4 * A115005(n).
a(n) = 4*((n-1)*(2n-1)+Sum_{i=2..n-1} (n-i)*(2*n-i)*phi(i)). - Chai Wah Wu, Aug 17 2021

A332612 a(n) = Sum_{ i=2..n-1, j=1..i-1, gcd(i,j)=1 } (n-i)*(n-j).

Original entry on oeis.org

0, 0, 2, 11, 32, 77, 148, 268, 442, 691, 1018, 1472, 2036, 2780, 3686, 4786, 6100, 7724, 9598, 11863, 14454, 17437, 20818, 24772, 29172, 34200, 39794, 46071, 52986, 60817, 69314, 78860, 89292, 100720, 113122, 126686, 141244, 157294, 174566, 193228, 213172, 234954, 258058, 283189, 309946, 338473, 368782, 401516, 436040
Offset: 1

Views

Author

Keywords

Comments

Related to the number of linear dichotomies on a square grid.
A331771(n) = 8*a(n) + 4*n*(n-1) + 4*(n-1)^2.

Crossrefs

The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. The present sequence and A331771 could be added to this list.

Programs

  • Maple
    I1 := proc(n) local a, i, j; a:=0;
    for i from 2 to n-1 do for j from 1 to i-1 do
    if igcd(i,j)=1 then a := a+(n-i)*(n-j); fi; od; od; a; end;
    [seq(I1(n),n=1..40)];
  • PARI
    a(n) = sum(i=2, n-1, sum(j=1, i-1, if (gcd(i,j)==1, (n-i)*(n-j)))); \\ Michel Marcus, Mar 14 2020
    
  • Python
    from sympy import totient
    def A332612(n): return sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n))//2 # Chai Wah Wu, Aug 17 2021

Formula

a(n) = (Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i))/2. - Chai Wah Wu, Aug 17 2021

A355902 Start with a 2 X n array of squares, join every vertex on top edge to every vertex on bottom edge; a(n) = one-half the number of cells.

Original entry on oeis.org

0, 3, 10, 26, 56, 112, 196, 331, 522, 790, 1138, 1615, 2204, 2975, 3910, 5041, 6388, 8047, 9958, 12262, 14894, 17920, 21346, 25347, 29796, 34875, 40522, 46854, 53826, 61716, 70274, 79883, 90380, 101875, 114346, 127981, 142612, 158737, 176086, 194827, 214852, 236717, 259906, 285124, 311970, 340588, 370990, 403819, 438440, 475556
Offset: 0

Views

Author

Keywords

Comments

Note that this figure can be obtained by drawing an "equatorial" line through the middle of the strip of n adjacent rectangles in A306302. This cuts each of the 2n "equatorial" cells in A306302 in two. It follows that 2*a(n) = A306302(n) + 2*n, i.e. that a(n) = A306302(n)/2 + n. Note that there is an explicit formula for A306302(n) in terms of n. - Scott R. Shannon, Sep 06 2022.
This means the present sequence is one more member of the large class of sequences which are essentially the same as A115004 (see Cross-References). - N. J. A. Sloane, Sep 06 2022

Crossrefs

The following nine sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n; A355902(n) = n + A306302(n)/2. - N. J. A. Sloane, Sep 06 2022

Formula

a(n) = A356790(2,n+2)/2 - 2.

A115010 Array read by antidiagonals: let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), then T(m,n) = 2*m*n+m+n+2*V(m,n), for m >= 1, n >= 1.

Original entry on oeis.org

6, 13, 13, 22, 28, 22, 33, 49, 49, 33, 46, 74, 86, 74, 46, 61, 105, 131, 131, 105, 61, 78, 140, 188, 200, 188, 140, 78, 97, 181, 251, 289, 289, 251, 181, 97, 118, 226, 326, 386, 418, 386, 326, 226, 118, 141, 277, 409, 503, 559, 559, 503, 409, 277, 141, 166, 332, 502, 632, 730
Offset: 1

Views

Author

N. J. A. Sloane, Feb 24 2006

Keywords

Crossrefs

Programs

  • Maple
    V:=proc(m,n) local t1,i,j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i,j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end; T:=(m,n)->(2*m*n+m+n+2*V(m,n));
  • Mathematica
    V[m_, n_] := Sum[Boole[CoprimeQ[i, j]]*(m-i+1)*(n-j+1), {i, m}, {j, n}];
    T[m_, n_] := 2*m*n + m + n + 2*V[m, n];
    Table[T[m - n + 1, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Nov 28 2017 *)
Previous Showing 11-14 of 14 results.