cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A358415 a(n) is the prime or perfect or amicable or sociable number encountered in the aliquot sequence for 2^n.

Original entry on oeis.org

2, 3, 7, 3, 31, 41, 127, 41, 43, 7, 113, 7, 8191, 6, 6, 313, 131071, 211457, 524287, 53, 4217, 433, 41, 547, 2243, 691921, 21275809, 673, 76831, 467, 2147483647, 89, 112337, 401, 17681, 9342799, 12011, 9511, 19, 1061129, 164524721, 5460123943, 71, 106661, 33188053169, 211, 41
Offset: 1

Views

Author

Michel Marcus, Nov 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(b=2); if (n==1, return(b)); my(list = List(), s=b^n); for (i=1, oo, s = sigma(s) - s; if (#select(x->(x==s), list), return(s)); if (isprime(s), return (s)); listput(list, s););

Formula

a(n) = A115350(2^n).

A234842 Primes that are reached by an ever increasing aliquot sequence.

Original entry on oeis.org

463, 523, 983, 1153, 2851, 2969, 4339, 4507, 6121, 8263, 8893, 10093, 12451, 17911, 18427, 18913, 22807, 22811, 25033, 27961, 33223, 36781, 41849, 42643, 48571, 60091, 64237, 71503, 73303, 74131, 90217, 90481, 103813, 108263, 123601, 124447, 125863, 140443
Offset: 1

Views

Author

Michel Marcus, Dec 31 2013

Keywords

Comments

Note that the starting point of these aliquot sequences are not in increasing order, since for instance we have: 392->463->1 and 324->523->1, that is, with 392>324 while 463<523.
One can observe that the "ever increasing aliquot" part in the definition is not really necessary. A prime is in the sequence if there is an abundant number whose sum of proper divisors results into this prime. So sequence could also be defined as: Primes resulting from summing up the proper divisors of an abundant number. - Michel Marcus, Jan 05 2014
If we try to build the revert sequence listing the starting points of the aliquot sequences, we would get the following terms in increasing order 324, 392, 784, 800, 2304, 2450, 2704, 3600, 3872. But then for n=5352, we'd hit a sequence that begins 5352->8088->12192->20064 and keeps rising to a point where the factors of the last known term are not known. Then later, there are several other such aliquot sequences like 9336->14064->22392 or 10344->15576->27624 that have the same behavior. Thus the only sure terms of the revert sequence would be the terms listed earlier. - Michel Marcus, Jan 11 2014

Examples

			The aliquot sequence that begins with 10712 is always increasing before reaching prime 12451: 10712->11128->11552->12451->1, hence 12451 is in the sequence.
20422951 also belongs here with the aliquot sequence that starts at 14952, so a 13-tuple abundant (see factordb link).
People at the Aliquot Sequences project have found longer sequences that reach higher primes.
		

Crossrefs

Programs

  • PARI
    prev(n) = {for (i=1, n, if ((sigma(i) - i) == n, return (i));); return (0);}
    lista(nn) = {forprime(p=2, nn, if (prev(p), print1(p, ", ");););} \\ simplified by Michel Marcus, Jan 11 2014

A347769 a(0) = 0; a(1) = 1; for n > 1, a(n) = A001065(a(n-1)) = sigma(a(n-1)) - a(n-1) (the sum of aliquot parts of a(n-1)) if this is not yet in the sequence; otherwise a(n) is the smallest number missing from the sequence.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 15, 13, 14, 17, 18, 21, 19, 20, 22, 23, 24, 36, 55, 25, 26, 27, 28, 29, 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 31, 32, 34, 35, 37, 38, 39, 40, 50, 43, 41, 44, 46, 47, 48, 76, 64, 63, 49, 51, 52, 53, 56, 57, 58, 59, 60, 108, 172
Offset: 0

Views

Author

Eric Chen, Sep 13 2021

Keywords

Comments

This sequence is a permutation of the nonnegative integers iff Catalan's aliquot sequence conjecture (also called Catalan-Dickson conjecture) is true.
a(563) = 276 is the smallest number whose aliquot sequence has not yet been fully determined.
As long as the aliquot sequence of 276 is not known to be finite or eventually periodic, a(563+k) = A008892(k).

Examples

			a(0) = 0, a(1) = 1;
since A001065(a(1)) = 0 has already appeared in this sequence, a(2) = 2;
since A001065(a(2)) = 1 has already appeared in this sequence, a(3) = 3;
...
a(11) = 11;
since A001065(a(11)) = 1 has already appeared in this sequence, a(12) = 12;
since A001065(a(12)) = 16 has not yet appeared in this sequence, a(13) = A001065(a(12)) = 16;
since A001065(a(13)) = 15 has not yet appeared in this sequence, a(14) = A001065(a(13)) = 15;
since A001065(a(14)) = 9 has already appeared in this sequence, a(15) = 13;
...
		

Crossrefs

Cf. A032451.
Cf. A001065 (sum of aliquot parts).
Cf. A003023, A044050, A098007, A098008: ("length" of aliquot sequences, four versions).
Cf. A007906.
Cf. A115060 (maximum term of aliquot sequences).
Cf. A115350 (termination of the aliquot sequences).
Cf. A098009, A098010 (records of "length" of aliquot sequences).
Cf. A290141, A290142 (records of maximum term of aliquot sequences).
Aliquot sequences starting at various numbers: A000004 (0), A000007 (1), A033322 (2), A010722 (6), A143090 (12), A143645 (24), A010867 (28), A008885 (30), A143721 (38), A008886 (42), A143722 (48), A143723 (52), A008887 (60), A143733 (62), A143737 (68), A143741 (72), A143754 (75), A143755 (80), A143756 (81), A143757 (82), A143758 (84), A143759 (86), A143767 (87), A143846 (88), A143847 (96), A143919 (100), A008888 (138), A008889 (150), A008890 (168), A008891 (180), A203777 (220), A008892 (276), A014360 (552), A014361 (564), A074907 (570), A014362 (660), A269542 (702), A045477 (840), A014363 (966), A014364 (1074), A014365 (1134), A074906 (1521), A143930 (3630), A072891 (12496), A072890 (14316), A171103 (46758), A072892 (1264460).

Programs

  • PARI
    A347769_list(N)=print1(0, ", "); if(N>0, print1(1, ", ")); v=[0, 1]; b=1; for(n=2, N, if(setsearch(Set(v), sigma(b)-b), k=1; while(k<=n, if(!setsearch(Set(v), k), b=k; k=n+1, k++)), b=sigma(b)-b); print1(b, ", "); v=concat(v, b))
Previous Showing 11-13 of 13 results.