cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A159191 Number of n-colorings of the Robertson graph.

Original entry on oeis.org

0, 0, 0, 24, 3490848, 3501104400, 564523119840, 31643453033640, 886834653776064, 15220684846368288, 181298924180884800, 1627952400490177080, 11672280987833510880, 69664869701930893104, 357038627052783076128, 1609181428647593728200, 6498071673405936462720
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2009

Keywords

Comments

The Robertson graph is the unique (4,5) cage: the quartic graph on 19 vertices (so 38 edges) with girth 5.

Crossrefs

Programs

  • Maple
    a:= n-> n^19 -38*n^18 +703*n^17 -8436*n^16 +73761*n^15 -500004*n^14 +2727105*n^13 -12246808*n^12 +45913333*n^11 -144701057*n^10 +383839223*n^9 -853388854*n^8 +1574465385*n^7 -2370057775*n^6 +2835163369*n^5 -2587310804*n^4 +1685281636*n^3 -693467820*n^2 +134217080*n:
    seq(a(n), n=0..20);

Formula

a(n) = n^19 -38*n^18 + ... (see Maple program).

A233148 Number of n-edge-colorings of the cubical graph.

Original entry on oeis.org

0, 0, 0, 24, 9216, 772680, 20864640, 281690640, 2408469504, 14923820016, 72840764160, 295839890280, 1038542714880, 3238606068984, 9155710252416, 23832538897440, 57817164625920, 131989025850720, 285757100158464, 590483650831416, 1170770734955520
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2013

Keywords

Comments

Also number of n-colorings of the cuboctahedral graph.

Crossrefs

Programs

  • Maple
    a:= n-> n*(n-1)*(n-2) *(-11072 +(28400 +(-34192 +(25524 +(-13031
            +(4701 +(-1191 +(203 +(-21+n)*n)*n)*n)*n)*n)*n)*n)*n):
    seq(a(n), n=0..30);

Formula

a(n) = n*(n-1)*(n-2)*(n^9 -21*n^8 +203*n^7 -1191*n^6 +4701*n^5 -13031*n^4 +25524*n^3 -34192*n^2 +28400*n -11072).
G.f.: -24*x^3*(29584*x^9 +491264*x^8 +2823089*x^7 +6622739*x^6 +6646049*x^5 +2837531*x^4 +480491*x^3 +27281*x^2 +371*x+ 1) / (x-1)^13.
Previous Showing 11-12 of 12 results.