cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A115437 Numbers m such that the concatenation of m with m+4 gives a square.

Original entry on oeis.org

96, 205, 300, 477, 732, 1920, 3157, 52896, 120085, 427020, 8264460, 88581312, 112000885, 112917765, 143075580, 152863360, 193537077, 233788192, 266755221, 313680096, 370908477, 386568925, 440852992, 442670220
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

From Farideh Firoozbakht, Nov 26 2006: (Start)
1. a(n).(a(n)+4) = A115438^2 where "." denotes concatenation.
2. All numbers of the form f(j) = 4{j}.2.6{j-1}.70.2{j}.0 where each expression in braces denotes the multiplicity of the digit preceding the expression (e.g., "4{j}" means that the digit "4" appears j times consecutively) and where j > 0 are in the sequence because if k(j) = 6{j}.5.3{j}.4.6{j}.8 then k(j)^2 = f(j).(f(j)+4). For example, f(4) = 444426667022220, k(4) = 666653333466668, and k(4)^2 = 666653333466668^2 = f(4).(f(4)+4) = 444426667022220.444426667022224.
3. All numbers of the form f(j) = 1{j}.2.0{j+1}.8{j}.5 where j > -1 are in the sequence because if k(j) = 3{j}.4.6{j}.5.3{j+1} then k(j)^2 = f(j).(f(j)+4). For example, f(5) = 111112000000888885, k(5) = 333334666665333333, and k(5)^2 = 333334666665333333^2 = f(5).(f(5)+4) = 111112000000888885.111112000000888889. (End)

Examples

			Using "." to denote concatenation, 120085.120089 = 346533^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5],IntegerQ@Sqrt@FromDigits@Flatten[IntegerDigits/@{#,#+4}]&] (* Giorgos Kalogeropoulos, Jul 27 2021 *)

A115441 Numbers whose square is the concatenation of two numbers k and k+9.

Original entry on oeis.org

465, 536, 718, 822, 3428, 6573, 90907, 980202, 3636361, 6363640, 41176468, 58823533, 413533838, 426573430, 428571426, 432620009, 567379992, 571428575, 573426571, 586466163, 686261111, 725274729, 727272725, 731321308
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			82640_82649 = 90907^2.
		

Crossrefs

A116172 Numbers k such that k concatenated with k+2 gives the product of two numbers which differ by 5.

Original entry on oeis.org

2, 74, 59264, 510782, 906902, 81790664, 92776472, 10876856041862, 11796926254874, 18332259798794, 18388650720624, 32624670587648, 32699883214248, 43103618706398, 44916698243804, 66132258426302
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k+6 gives the product of two numbers which differ by 3.
Also numbers k such that k concatenated with k+8 gives the product of two numbers which differ by 1.
If k+2 and k-4 have the same number of digits, then k is also in A116132 because k//k+2 = 10^d*k + k + 2 = m*(m+5) then implies k//k-4 = 10^d*k + k - 4 = m*(m+5) - 6 = (m-1)*(m+6). - R. J. Mathar, Aug 10 2008

Examples

			92776472//92776474 = 96320542 * 96320547, where // denotes concatenation.
92776472//92776480 = 96320544 * 96320545.
92776472//92776478 = 96320543 * 96320546.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116193 Numbers k such that k concatenated with k+5 gives the product of two numbers which differ by 5.

Original entry on oeis.org

11, 45, 18281, 32769, 56891, 180689, 330539, 959481, 1850201, 3247409, 4940219, 2425563239, 2575561739, 6003563495, 7245212645, 7770160145, 4983798265289, 5049762270381, 5534298528989, 5603798594169, 21894082450101
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k+9 gives the product of two numbers which differ by 3. For proof that this is the same sequence compare A116133.
Also numbers k such that k concatenated with k-9 gives the product of two numbers which differ by 9.

Examples

			7770160145//7770160136 = 8814851183 * 8814851192, where // denotes concatenation.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 12 2007

A116168 Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 8.

Original entry on oeis.org

19, 32, 16284704, 35576083, 15764836187996024260119639732979, 19807200907254352332962649366152, 20298517078413563250826300137112, 30190765850423053042937262322867, 30796637697589506772859224996627
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k+8 gives the product of two numbers which differ by 6.

Examples

			35576083//35576084 = 59645686 * 59645694, where // denotes concatenation.
35576083//35576091 = 59645687 * 59645693.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116173 Numbers k such that k concatenated with k+2 gives the product of two numbers which differ by 6.

Original entry on oeis.org

6752089, 6448802889351008245, 18894512461523256139943105859903480218905, 31958875438439894736354375209245786214798
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k+7 gives the product of two numbers which differ by 4.
If k+2 and k-5 have the same number of digits, the k is also in A116126, because k//k+2 = 10^d*k + k + 2 = m*(m+6) then implies a representation k//k-5 = 10^d*k + k - 5 = m*(m+6)-7 = (m-1)*(m+7). - R. J. Mathar, Aug 10 2008

Examples

			6752089//6752091 = 8217107 * 8217113, where // denotes concatenation.
6752089//6752096 = 8217108 * 8217112.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 12 2007

A116323 n times n+4 gives the concatenation of two numbers m and m+5.

Original entry on oeis.org

463, 534, 716, 820, 3426, 6571, 90905, 980200, 3636359, 6363638, 41176466, 58823531, 413533836, 426573428, 428571424, 432620007, 567379990, 571428573, 573426569, 586466161, 686261109, 725274727, 727272723, 731321306
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116344 Numbers k such that k*(k+2) gives the concatenation of two numbers m and m+8.

Original entry on oeis.org

464, 535, 717, 821, 3427, 6572, 90906, 980201, 3636360, 6363639, 41176467, 58823532, 413533837, 426573429, 428571425, 432620008, 567379991, 571428574, 573426570, 586466162, 686261110, 725274728, 727272724, 731321307
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

Previous Showing 11-18 of 18 results.