cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A115545 Numbers k such that the concatenation of 6*k with k gives a square.

Original entry on oeis.org

122449, 489796, 122448979591836734693877551020408163265306122449, 489795918367346938775510204081632653061224489796
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			734694_122449 = 857143^2.
		

Crossrefs

A115546 Numbers k such that k^2 is the concatenation of two numbers 6*m and m.

Original entry on oeis.org

857143, 1714286, 857142857142857142857142857142857142857142857143, 1714285714285714285714285714285714285714285714286
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			857143^2 = 734694_122449.
		

Crossrefs

Extensions

Definition modified by Georg Fischer, Jul 26 2019

A115547 Numbers k such that the concatenation of 7*k with k gives a square.

Original entry on oeis.org

11909262759924385633270321361058601134215500945179584121, 21172022684310018903591682419659735349716446124763705104, 33081285444234404536862003780718336483931947069943289225, 47637051039697542533081285444234404536862003780718336484
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Crossrefs

A115548 Numbers k such that k^2 is the concatenation of two numbers m and 7*m.

Original entry on oeis.org

91304347826086956521739130434782608695652173913043478261, 121739130434782608695652173913043478260869565217391304348, 152173913043478260869565217391304347826086956521739130435, 182608695652173913043478260869565217391304347826086956522
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Crossrefs

A115550 Numbers k such that k^2 is the concatenation of two numbers m and 8*m.

Original entry on oeis.org

18, 36, 168, 252, 336, 1668, 3336, 16668, 33336, 166668, 333336, 1666668, 3333336, 16666668, 22222224, 27777780, 33333336, 113149848, 114678900, 116207952, 117737004, 119266056, 120795108, 122324160, 123853212
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			18^2 = 3_24.
		

Crossrefs

A115551 Numbers k such that the concatenation of 8*k with k gives a square.

Original entry on oeis.org

1, 4, 9, 89, 889, 8889, 88889, 888889, 8888889, 88888889, 888888889, 1026765584, 1066636289, 1107266436, 1148656025, 1190805056, 1233713529, 1277381444, 1321808801, 1366995600, 1412941841, 1459647524, 1507112649, 1555337216
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			8_1 = 9^2.
		

Crossrefs

A115552 Numbers k such that k^2 is the concatenation of two numbers 8*m and m.

Original entry on oeis.org

9, 18, 27, 267, 2667, 26667, 266667, 2666667, 26666667, 266666667, 2666666667, 9063180828, 9237472767, 9411764706, 9586056645, 9760348584, 9934640523, 10108932462, 10283224401, 10457516340, 10631808279, 10806100218
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			9^2 = 8_1.
		

Crossrefs

Extensions

Definition modified by Georg Fischer, Jul 26 2019

A115553 Numbers k such that the concatenation of k with 9*k gives a square.

Original entry on oeis.org

2041, 8164, 2366863905325444, 5325443786982249, 9467455621301776, 2040816326530612244897959183673469387755102041, 8163265306122448979591836734693877551020408164
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			2041_18369 = 14287^2.
		

Crossrefs

A115554 Numbers k such that k^2 is the concatenation of two numbers m and 9*m.

Original entry on oeis.org

14287, 28574, 15384615384615386, 23076923076923079, 30769230769230772, 14285714285714285714285714285714285714285714287, 28571428571428571428571428571428571428571428574
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			14287^2 = 2041_18369.
		

Crossrefs

A380428 Numbers k for which nonnegative integers x and y exist such that k is the concatenation of x and y as well as k = (x + y)^2.

Original entry on oeis.org

81, 100, 2025, 3025, 88209, 494209, 4941729, 7441984, 24502500, 25502500, 52881984, 60481729, 300814336, 493817284, 6049417284, 6832014336, 20408122449, 21948126201, 33058148761, 35010152100, 43470165025, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969
Offset: 1

Views

Author

Felix Huber, Jan 25 2025

Keywords

Comments

Subsequence of A000290.
From David A. Corneth, Apr 26 2025: (Start)
If y has q digits then a term m is of the form (x + y) = 10^q * x + y. Choosing some y we can solve for x (the equation is a quadratic with respect to x) and see if it produces a term.
y comes from A238712.
The sequence is infinite; it contains (25*100^i +- 5*10^i)^2 = concat(25*100^i +- 5*10^i, 25*100^i) for all i >= 0.
Neither x nor y can have a leading 0. (End)

Examples

			2025 is in the sequence because (20 + 25)^2 = 2025.
100 is in the sequence because (10 + 0)^2 = 100.
88209 is in the sequence because (88 + 209)^2 = 88209.
From _David A. Corneth_, Apr 26 2025: (Start)
9801 is not in the sequence even though (98 + 01)^2 = 9801 but 01 has a leading 0 which is disallowed.
If a term m ends in y = 209 where y has three digits we have 10^3*x + y = (x + y)^2. Solving for x gives x = 88 or x = 494 corresponding to terms 88209 and 494209. (End)
		

Crossrefs

Programs

  • Maple
    A380428:=proc(n)
        option remember;
        local a,i,k,x,y;
        if n=1 then
            81
        elif n=2 then
            100
        else
            for a from isqrt(procname(n-1))+1 do
                k:=length(a^2);
                for i to k-1 do
                    x:=floor(a^2/10^i);
                    y:=a^2-x*10^i;
                    if x+y=a and length(x)+length(y)=k then
                        return a^2
                    fi
                od
            od
        fi;
    end proc;
    seq(A380428(n),n=1..26);
Previous Showing 21-30 of 30 results.