cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A363632 Decimal expansion of Sum_{k>=2} 1/(k* log(k)^(3/2)).

Original entry on oeis.org

2, 9, 3, 7, 6, 6, 3, 6, 3, 7, 9, 0, 1, 2, 3, 1, 7, 7
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2023

Keywords

Examples

			2.93766363790123177...
		

Crossrefs

Cf. A115563 (expo 2), A363633 (expo 5/2), A145419 (expo 3), A145420 (expo 4).

A363633 Decimal expansion of Sum_{k>=2} 1/(k* log(k)^(5/2)).

Original entry on oeis.org

1, 9, 8, 3, 4, 6, 3, 5, 4, 7, 1, 5, 6, 2, 3, 9, 3, 9, 1, 1, 8
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2023

Keywords

Examples

			1.98346354715623939118...
		

Crossrefs

Cf. A363632 (expo 3/2), A115563 (expo 2), A145419 (expo 3), A145420 (expo 4).

A347145 Decimal expansion of Sum_{n>=1} 1/(n*H(n)^2) where H(n) is the n-th harmonic number.

Original entry on oeis.org

1, 8, 4, 8, 2, 5, 4, 5, 1, 7, 6, 1, 1, 2, 1, 8, 9, 0, 3, 8, 1, 1, 9, 3, 1, 4, 9, 3, 9, 6
Offset: 1

Views

Author

Bernard Schott, Oct 02 2021

Keywords

Comments

Theorem: If u(n) is a series with positive terms such that u(n) -> 0 when n -> oo and that is divergent, i.e., Sum_{n>=0} u(n) = oo, let S(n) = Sum_{k=0..n} u(k) then, the series of term v(n) = u(n)/S(n)^q is convergent iff q>1.
The simplest application is for u(n) = 1/n, S(n) = H(n) = 1 + 1/2 + ... + 1/n, then the series of term w(n) = 1/(n*H(n)^q) is convergent iff q>1.
This sequence gives this limit when q = 2.

Examples

			1.84825451761121890381193149396...
		

References

  • Xavier Gourdon, Analyse, Les Maths en tête, Exercice 5, page 213, Ellipses, 1994.
  • J. Lelong-Ferrand and J. M. Arnaudiès, Cours de Mathématiques, Tome 2, Analyse, 4ème édition, Classes préparatoires, 1er cycle universitaire, Exercice 21, p. 599, Dunod Université, 1977.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n*HarmonicNumber[n]^2), {n, 1, Infinity}], 33], 10, 30][[1]] (* Amiram Eldar, Oct 02 2021 *)

Extensions

More terms from Amiram Eldar, Oct 02 2021

A352473 Decimal expansion of Sum_{k>=2} (log(k!) / k!).

Original entry on oeis.org

8, 2, 8, 6, 4, 7, 1, 2, 7, 6, 7, 1, 8, 7, 8, 5, 0, 8, 0, 3, 8, 9, 1, 6, 9, 4, 6, 8, 5, 5, 8, 4, 7, 8, 9, 1, 8, 8, 3, 6, 1, 6, 6, 5, 9, 4, 0, 1, 5, 5, 8, 8, 2, 7, 9, 4, 5, 6, 3, 9, 6, 5, 8, 9, 7, 1, 3, 7, 5, 5, 7, 9, 4, 1, 9, 4, 2, 2, 3, 9, 1, 3, 1, 0, 7, 1, 4, 0, 6, 2, 0, 8, 4, 6, 1, 8, 2
Offset: 0

Views

Author

Bernard Schott, Mar 17 2022

Keywords

Comments

Sum_{k>=2} (log(k) / k) is divergent but here, this series is convergent. If v(k) = log(k!) / k!, we have 0 <= v(k) <= w(k) = k^2/k! with w(k) that is convergent, hence, this positive series is convergent.

Examples

			0.8286471276718785080389169468558478918...
		

References

  • J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.13.b p. 250.

Crossrefs

Programs

  • Maple
    sum(log(n!)/n!, n=2..infinity);
  • PARI
    sumpos(k=2, log(k!)/k!) \\ Michel Marcus, Mar 17 2022

Formula

Equals Sum_{k>=2} (log(k!) / k!).
Previous Showing 11-14 of 14 results.