cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A272549 Expansion of x*(1 + 5*x - 3*x^2 + 7*x^3 + 3*x^4 + 3 *x^5 - x^6 + x^7)/((1 - x)^3*(1 + x + x^2 + x^3)^2).

Original entry on oeis.org

0, 1, 6, 3, 10, 15, 28, 21, 36, 45, 66, 55, 78, 91, 120, 105, 136, 153, 190, 171, 210, 231, 276, 253, 300, 325, 378, 351, 406, 435, 496, 465, 528, 561, 630, 595, 666, 703, 780, 741, 820, 861, 946, 903, 990, 1035, 1128, 1081, 1176, 1225, 1326, 1275, 1378, 1431, 1540, 1485, 1596, 1653, 1770
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2016

Keywords

Comments

Permutation of triangular numbers.
Consecutive alternating even and odd triangular numbers.

Examples

			a(0) = 0;
a(1) = 1;
a(2) = 1 + 2 + 3 = 6;
a(3) = 1 + 2 = 3;
a(4) = 1 + 2 + 3 + 4 = 10;
a(5) = 1 + 2 + 3 + 4 + 5 = 15;
a(6) = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28;
a(7) = 1 + 2 + 3 + 4 + 5 + 6 = 21;
a(8) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36, etc.
Illustration of initial terms:
-------------------------------------------------------------------
                                         o
                                         o o             o
                             o           o o o           o o
                   o         o o         o o o o         o o o
     o             o o       o o o       o o o o o       o o o o
     o o     o     o o o     o o o o     o o o o o o     o o o o o
o    o o o   o o   o o o o   o o o o o   o o o o o o o   o o o o o o
--------------------------------------------------------------------
--------------------------------------------------------------------
n=1   n=2    n=3     n=4       n=5           n=6             n=7
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {0, 1, 6, 3, 10, 15, 28, 21, 36}, 59]
    Table[(1/8) (2 n + Sin[(Pi n)/2] - Cos[(Pi n)/2] + (-1)^n) (2 n + Sin[(Pi n)/2] - Cos[(Pi n)/2] + (-1)^n + 2), {n, 0, 58}]
    Table[(1/8) (2 n - (-1)^(n - 1) + I^((n - 2) (n - 1))) (2 n - (-1)^(n - 1) + I^((n - 2) (n - 1)) + 2), {n, 0, 58}]

Formula

O.g.f.: x*(1 + 5*x - 3*x^2 + 7*x^3 + 3*x^4 + 3 *x^5 - x^6 + x^7)/((1 - x)^3*(1 + x + x^2 + x^3)^2).
E.g.f.: (1/2)*((x^2 + x + 1)*cosh(x) + x*sin(x) + (x - 1)*cos(x) + x*(x + 3)*sinh(x)).
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9).
a(n) = (1/8)*(2*n + sin((Pi*n)/2) - cos((Pi*n)/2) + (-1)^n) *(2*n + sin((Pi*n)/2) - cos((Pi*n)/2) + (-1)^n + 2).
a(n) = A000217(A116966(n-1)), n>0.
a(n) mod 2 = A000035(n)
Sum_{n>=1} 1/a(n) = 2.
Previous Showing 11-11 of 11 results.