cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A326115 Number of maximal double-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 12, 12, 12, 12, 24, 24, 32, 32, 64, 64, 64, 64, 128, 128, 192, 192, 384, 384, 384, 384, 768, 768, 960, 960, 1920, 1920, 1920, 1920, 3840, 3840, 5760, 5760, 11520, 11520, 11520, 11520, 23040, 23040, 30720, 30720
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

A set is double-free if no element is twice any other element.

Examples

			The a(1) = 1 through a(9) = 6 sets:
  {1}  {1}  {13}  {23}   {235}   {235}   {2357}   {13457}  {134579}
       {2}  {23}  {134}  {1345}  {256}   {2567}   {13578}  {135789}
                                 {1345}  {13457}  {14567}  {145679}
                                 {1456}  {14567}  {15678}  {156789}
                                                  {23578}  {235789}
                                                  {25678}  {256789}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,2*#]=={}&]]],{n,0,10}]

Formula

From Charlie Neder, Jun 11 2019: (Start)
a(n) = Product {k < n/2} A000931(8+floor(log_2(n/(2k+1)))).
a(2k+1) = a(2k), a(8k+4) = a(8k+3). (End)

Extensions

a(16)-a(49) from Charlie Neder, Jun 11 2019

A323091 Number of strict knapsack factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 3, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Comments

A strict knapsack factorization is a finite set of positive integers > 1 such that every subset has a different product.

Examples

			The a(144) = 11 factorizations:
  (144),
  (2*72), (3*48), (4*36),(6*24), (8*18), (9*16),
  (2*3*24), (2*4*18), (2*8*9), (3*6*8).
Missing from this list are (2*6*12), (3*4*12), (2*3*4*6), which are not knapsack.
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[strfacs[n],UnsameQ@@Times@@@Subsets[#]&]],{n,100}]

Formula

a(prime^n) = A275972(n).
Previous Showing 21-22 of 22 results.