cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A129449 Expansion of psi(-x) * psi(-x^3) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -2, 1, 0, 2, 0, 0, -2, 2, 0, 1, -1, 0, -2, 0, 0, 2, -2, 0, -2, 0, 0, 3, 0, 0, 0, 2, 0, 2, -2, 0, -2, 0, 0, 2, -1, 0, -2, 1, 0, 0, 0, 0, -4, 2, 0, 2, 0, 0, -2, 0, 0, 2, -2, 0, 0, 2, 0, 1, 0, 0, -2, 2, 0, 4, 0, 0, -2, 0, 0, 0, -3, 0, -2, 0, 0, 2, 0, 0, -2, 0, 0, 3, -2, 0, -2, 0, 0, 2, -2, 0, 0, 2, 0, 2, 0, 0, -2, 2, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 53 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - x - 2*x^3 + x^4 + 2*x^6 - 2*x^9 + 2*x^10 + x^12 - x^13 - 2*x^15 + ...
G.f. = q - q^3 - 2*q^7 + q^9 + 2*q^13 - 2*q^19 + 2*q^21 + q^25 - q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)] / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := With[ {m = 2 n + 1}, If[ m < 1, 0, Sum[ KroneckerSymbol[ 12, d] KroneckerSymbol[ -4, m/d], {d, Divisors[ m]}]]]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker( -4, d) * kronecker( 12, n/d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)/ (eta(x^2 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-1/2) * eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ -1, 0, -2, -1, -1, 0, -1, -1, -2, 0, -1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = (1 + (-1)^e) / 2 if p == 5, 11 (mod 12), b(p^e) = e+1 if p == 1 (mod 12), b(p^e) = (-1)^e * (e+1) if p == 7 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 48^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A033762(n). a(2*n) = A112604(n). a(2*n + 1) = -A112605(n). a(3*n) = A129451(n). a(3*n + 1) = -a(n). a(3*n + 2) = 0.
a(4*n) = A112606(n). a(4*n + 1) = - A112608(n). a(4*n + 2) = 2 * A112607(n). a(4*n + 3) = - 2 * A112609(n).
a(6*n) = A123884(n). a(6*n + 3) = -2 * A121361(n).

A137608 Expansion of (1 - psi(-q)^3 / psi(-q^3)) / 3 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 0, -1, 2, -1, 1, 0, 0, -1, 2, -2, 0, -1, 0, -1, 2, 0, 2, 0, 0, -1, 1, -2, 1, -2, 0, 0, 2, -1, 0, 0, 0, -1, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, -1, 3, -1, 0, -2, 0, -1, 0, -2, 2, 0, 0, 0, 2, -2, 2, -1, 0, 0, 2, 0, 0, 0, 0, -1, 2, -2, 1, -2, 0, -2, 2, 0, 1, 0, 0, -2, 0, -2, 0, 0, 0, 0, 4, 0, 2, 0, 0, -1, 2, -3, 0, -1, 0, 0, 2, -2, 0
Offset: 1

Views

Author

Michael Somos, Jan 29 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - q^2 + q^3 - q^4 - q^6 + 2*q^7 - q^8 + q^9 - q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[n, KroneckerSymbol[ -12, #] &]]; (* Michael Somos, May 06 2015 *)
    a[ n_] := SeriesCoefficient[ (4 + EllipticTheta[ 2, Pi/4, q^(1/2)]^3 / EllipticTheta[ 2, Pi/4, q^(3/2)]) / 6, {q, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -2, 0, 0, -1, 0, 1, 0, 0, 2, -1, 0}[[Mod[#, 12, 1]]] &]]; (* Michael Somos, May 07 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker(-12, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A))) / 3, n))}; /* Michael Somos, May 06 2015 */

Formula

Expansion of (1 - b(q^2)^2 / b(-q) ) / 3 in powers of q where b() is a cubic AGM function.
Moebius transform is period 12 sequence [ 1, -2, 0, 0, -1, 0, 1, 0, 0, 2, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -1 unless e=0, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (-1)^k * (x^k + x^(3*k)) / (1 + x^k + x^(2*k)).
G.f.: ( Sum_{k>0} x^(6*k-5) / ( 1 + x^(6*k-5) ) - x^(6*k-1) / ( 1 + x^(6*k-1) )).
a(n) = -(-1)^n * A035178(n). -3 * a(n) = A132973(n) unless n = 0.
a(2*n) = -A035178(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A227696(n).
a(4*n + 1) + A112604(n). a(4*n + 3) = A112605(n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n-1). a(8*n + 7) = 2 * A112609(n).
a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n).

A246650 Expansion of phi(x) * chi(-x) * psi(x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, -2, 0, 2, -3, -2, 0, 1, 2, -2, 0, 2, 0, -2, 0, 3, 2, 0, 0, 2, -3, -2, 0, 2, 2, -2, 0, 0, 0, -4, 0, 2, 1, -2, 0, 2, -6, 0, 0, 1, 2, -2, 0, 4, 0, -2, 0, 0, 2, -2, 0, 2, 0, -2, 0, 3, 2, -2, 0, 2, 0, 0, 0, 2, 3, -2, 0, 0, -6, -2, 0, 4, 0, -2, 0, 2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 31 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 + 2*x^4 - 3*x^5 - 2*x^6 + x^8 + 2*x^9 - 2*x^10 + ...
G.f. = q + q^4 - 2*q^7 + 2*q^13 - 3*q^16 - 2*q^19 + q^25 + 2*q^28 - ...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^2), n))};

Formula

Expansion of q^(-1/3) * eta(q^2)^4 * eta(q^6)^2 / (eta(q) * eta(q^3) * eta(q^4)^2) in powers of q.
a(2*n) = A129451(n). a(4*n) = A123884(n). a(4*n + 1) = A122861(n). a(4*n + 2) = -2 * A121361(n). a(4*n + 3) = 0.
a(8*n) = A131961(n). a(8*n + 1) = A097195(n). a(8*n + 2) = -2 * A131962(n). a(8*n + 4) = 2 * A131963(n). a(8*n + 6) = -2 * A131964(n).
a(16*n + 1) = A123884(n). a(16*n + 5) = -3 * A033687(n). a(16*n + 9) = 2 * A121361(n). a(16*n + 13) = 0.

A246752 Expansion of phi(-x) * chi(x) * psi(-x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, -2, 0, 2, 3, -2, 0, 1, -2, -2, 0, 2, 0, -2, 0, 3, -2, 0, 0, 2, 3, -2, 0, 2, -2, -2, 0, 0, 0, -4, 0, 2, -1, -2, 0, 2, 6, 0, 0, 1, -2, -2, 0, 4, 0, -2, 0, 0, -2, -2, 0, 2, 0, -2, 0, 3, -2, -2, 0, 2, 0, 0, 0, 2, -3, -2, 0, 0, 6, -2, 0, 4, 0, -2, 0, 2, 0
Offset: 0

Views

Author

Michael Somos, Sep 02 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - 2*x^2 + 2*x^4 + 3*x^5 - 2*x^6 + x^8 - 2*x^9 - 2*x^10 + ...
G.f. = q - q^4 - 2*q^7 + 2*q^13 + 3*q^16 - 2*q^19 + q^25 - 2*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^2] QPochhammer[ x^3] QPochhammer[ x^12] / (QPochhammer[ x^4] QPochhammer[ x^6]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A) / (eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of phi(-x) * f(x^1, x^5) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(-1/3) * eta(q) * eta(q^2) * eta(q^3) * eta(q^12) / (eta(q^4) * eta(q^6)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 768^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246838.
a(n) = (-1)^n * A246650(n).
Convolution of A002448 and A089801.
a(2*n) = A129451(n). a(4*n) = A123884(n). a(4*n + 1) = - A122861(n). a(4*n + 2) = - 2 * A121361(n). a(4*n + 3) = 0.

A253625 Expansion of psi(q^2) * f(-q, q^2)^2 / f(-q, -q^5) in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 3, -1, 3, 0, 3, -2, 3, -1, 0, 0, 3, -2, 6, 0, 3, 0, 3, -2, 0, -2, 0, 0, 3, -1, 6, -1, 6, 0, 0, -2, 3, 0, 0, 0, 3, -2, 6, -2, 0, 0, 6, -2, 0, 0, 0, 0, 3, -3, 3, 0, 6, 0, 3, 0, 6, -2, 0, 0, 0, -2, 6, -2, 3, 0, 0, -2, 0, 0, 0, 0, 3, -2, 6, -1, 6, 0, 6, -2
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - q + 3*q^2 - q^3 + 3*q^4 + 3*q^6 - 2*q^7 + 3*q^8 - q^9 + 3*q^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 81); A[1] - A[2] + 3*A[3] - A[4] + 3*A[5];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^ n Sum[(-1)^ Quotient[ d, 3] {1, 1, 0}[[ Mod[d, 3, 1] ]] {1, 2}[[ Mod[n/d, 2, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^3] (QPochhammer[ -q^3, q^6] QPochhammer[ -q^2, q^2])^4, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3]^2 EllipticTheta[ 2, 0, q]^2 / (EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * sumdiv(n, d, (-1)^(d\3) * (d%3>0) * (2-(n\d)%2)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^4 * eta(x^6 + A)^8 / (eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^12 + A)^4), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -3, if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of psi(q^2)^2 * phi(q^3)^2 / (psi(q) * psi(q^3)) = f(-q) * f(-q^3) * (chi(q^3) / chi(-q^2))^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (-a(q) - 3*a(q^2) + 4*a(q^4)) / 6 = b(q^4) * (b(q) + 2*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q) * eta(q^4)^4 * eta(q^6)^8 / (eta(q^2)^4 * eta(q^3)^3 * eta(q^12)^4) in powers of q.
Euler transform of period 12 sequence [ -1, 3, 2, -1, -1, -2, -1, -1, 2, 3, -1, -2, ...].
Moebius transform is period 12 sequence [ -1, 4, 0, 0, 1, 0, -1, 0, 0, -4, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 48^(-1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A253623.
a(n) = -b(n) where b() is multiplicative with b(2^e) = -3 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (3 - (k mod 2)*4) * (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)).
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(3*k)) * (1 + x^(3*k))^4 / (1 - x^(2*k) + x^(4*k))^4.
a(n) = (-1)^n * A253626(n). a(2*n) = A107760(n). a(2*n + 1) = - A033762(n). a(3*n) = a(n). a(3*n + 1) = - A122861(n). a(4*n + 1) = - A112604(n). a(4*n + 2) = 3 * A033762(n). a(4*n + 3) = - A112605(n).
a(6*n + 1) = - A097195(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0. a(12*n + 1) = - A123884(n). a(12*n + 7) = -2 * A121361(n). a(12*n + 10) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jun 08 2025

Extensions

Typo in formula fixed by Colin Barker, Jan 08 2015

A229143 Expansion of (b(q^3) - b(q)) / 3 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, 0, -3, 1, 0, 0, 2, 0, 0, 0, 0, -3, 2, 0, 0, 1, 0, 0, 2, 0, -6, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -6, 0, 0, 0, 2, 0, 0, 0, 0, -3, 3, 0, 0, 2, 0, 0, 0, 0, -6, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -3, 2, 0, 0, 2, 0, 0, 0, 0, -6
Offset: 1

Views

Author

Michael Somos, Sep 23 2013

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Rogers and Zudilin (2011) page 6: "This identity can be verified by eliminating b(q) with b(q^{1/3}) - b(q) = 3c(q^3) - c(q)."
The zeros of the g.f. A(q) where q = exp(2 Pi i t) are of the form t = (m/2 + sqrt(-3)/18) / n where m is an odd integer and n is in A004611. For example, (1/2 + sqrt(-3)/18) / 1, (1/2 + sqrt(-3)/18) / 7, (5/2 + sqrt(-3)/18) / 13.

Examples

			G.f. = q - 3*q^3 + q^4 + 2*q^7 - 3*q^12 + 2*q^13 + q^16 + 2*q^19 - 6*q^21 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(27), 1), 85); A[2] - 3*A[4] + A[5] + 2*A[8] - 3*A[13] + 2*A[14] + A[15]; /* Michael Somos, Jun 16 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3]^4 - QPochhammer[ q^9] QPochhammer[ q]^3) / (3 QPochhammer[ q^3] QPochhammer[ q^9]), {q, 0, n}]; (* Michael Somos, Jun 16 2015 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^9]^4 - 3 q^2 QPochhammer[ q^3] QPochhammer[ q^27]^3) / (QPochhammer[ q^3] QPochhammer[ q^9]), {q, 0, n}]; (* Michael Somos, Jun 16 2015 *)
    f[p_, e_] := If[Mod[p, 3] == 1, e+1, (1 + (-1)^e) / 2]; f[3, 1] = -3; f[3, e_] := 0; a[n_] := Times @@ f @@@ FactorInteger[n]; a[0] = 0; a[1] = 1; Array[a, 100, 0] (* Amiram Eldar, Sep 04 2023 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==3, -3 * (e==1), p%3==1, e+1, !(e%2))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^9 + A)^4 - 3 * x^2 * eta(x^3 + A) * eta(x^27 + A)^3) / (eta(x^3 + A) * eta(x^9 + A)), n))};
    

Formula

Expansion of c(q^3) / 3 - c(q^9) in powers of q where c() is a cubic AGM theta function.
Expansion of (a(q) - 4*a(q^3) + 3*a(q^9)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of (eta(q^3)^4 - eta(q)^3 * eta(q^9)) / (3 * eta(q^3) * eta(q^9)) in powers of q.
a(n) is multiplicative with a(3) = -3, a(3^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1 + (-1)^e) / 2 if p == 2 (mod 3).
G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(3*n + 2) = a(4*n + 2) = a(9*n) = a(9*n + 6) = 0. a(3*n + 1) = A033687(n). a(9*n + 3) = -3 * A033687(n).
From Michael Somos, Jun 16 2015: (Start)
a(4*n) = a(n). a(6*n + 1) = A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(n) = Sum_{d|n} A259024(n/d) * [ 0, 1, 0, -2, 0, 1][mod(d, 6) + 1]. (End)

A253626 Expansion of psi(q^2) * f(q, q^2)^2 / f(q, q^5) in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 3, 1, 3, 0, 3, 2, 3, 1, 0, 0, 3, 2, 6, 0, 3, 0, 3, 2, 0, 2, 0, 0, 3, 1, 6, 1, 6, 0, 0, 2, 3, 0, 0, 0, 3, 2, 6, 2, 0, 0, 6, 2, 0, 0, 0, 0, 3, 3, 3, 0, 6, 0, 3, 0, 6, 2, 0, 0, 0, 2, 6, 2, 3, 0, 0, 2, 0, 0, 0, 0, 3, 2, 6, 1, 6, 0, 6, 2, 0, 1, 0, 0, 6, 0, 6
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + q + 3*q^2 + q^3 + 3*q^4 + 3*q^6 + 2*q^7 + 3*q^8 + q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 86); A[1] + A[2] + 3*A[3] + A[4] + 3*A[5];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ (-1)^ Quotient[ d, 3] {1, 1, 0}[[ Mod[d, 3, 1] ]] {1, 2}[[ Mod[n/d, 2, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q] QPochhammer[ -q^3] (QPochhammer[ q^3, q^6] QPochhammer[ -q^2, q^2])^4, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-12, d) + if(d%2, 0, 2 * kronecker(-12, d/2))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^3 / ( eta(x + A) * eta(x^2 + A) * eta(x^6 + A) * eta(x^12 + A) ), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3, if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of psi(q^2)^2 * phi(-q^3)^2 / (psi(-q) * psi(-q^3)) = f(q) * f(q^3) * (chi(-q^3) / chi(-q^2))^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (a(q) + 3*a(q^2) + 2*a(q^4)) / 6 = b(q^4) * (-b(q) + 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^3)^3 * eta(q^4)^3 / ( eta(q) * eta(q^2) * eta(q^6) * eta(q^12) ) in powers of q.
Euler transform of period 12 sequence [ 1, 2, -2, -1, 1, 0, 1, -1, -2, 2, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 2, 0, 0, -1, 0, 1, 0, 0, -2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) is multiplicative with a(0) = 1, a(2^e) = 3 if e > 0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (3 - (k mod 2)*2) * (q^k + q^(3*k)) / (1 + q^(2*k) + q^(4*k)).
G.f.: Product_{k>0} (1 - q^(3*k))^3 * (1 - q^(4*k))^3 / ( (1 - q^k) * (1 - q^(2*k)) * (1 - q^(6*k)) * (1 - q^(12*k)) ).
a(n) = (-1)^n * A253625(n). a(2*n) = A107760(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A122861(n). a(4*n + 1) = A112604(n). a(4*n + 2) = 3 * A033762(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0. a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n). a(12*n + 10) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Jan 21 2024

A253623 Expansion of phi(q) * f(q, q^2)^2 / f(q^2, q^4) in powers of q where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 6, 4, 0, 0, 6, 8, 6, 4, 0, 0, 0, 8, 12, 0, 0, 0, 6, 8, 0, 8, 0, 0, 6, 4, 12, 4, 0, 0, 0, 8, 6, 0, 0, 0, 0, 8, 12, 8, 0, 0, 12, 8, 0, 0, 0, 0, 0, 12, 6, 0, 0, 0, 6, 0, 12, 8, 0, 0, 0, 8, 12, 8, 0, 0, 0, 8, 0, 0, 0, 0, 6, 8, 12, 4, 0, 0, 12, 8, 0, 4, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 4*x + 6*x^2 + 4*x^3 + 6*x^6 + 8*x^7 + 6*x^8 + 4*x^9 + 8*x^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 83); A[1] + 4*A[2] + 6*A[3] + 4*A[4];
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 + 2 Sum[ (1 + Mod[k, 2]) q^k / (1 - q^k + q^(2 k)), {k, n}], {q, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2 EllipticTheta[ 4, 0, q^3]^2 / (EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^6]), {q, 0, n}];
    a[ n_] := If[ n < 1, Boole[n == 0], 2 (-1)^n Sum[(-1)^(n/d) {2, -1, 0, 1, -2, 0}[[ Mod[ d, 6, 1] ]], {d, Divisors @ n}]];
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, (n/d%2 + 1) * (-1)^(d\3) * (d%3>0) ))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^n * sumdiv(n, d, (-1)^(n/d) * [0, 2, -1, 0, 1, -2][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^4 * eta(x^12 + A) / (eta(x + A)^4 * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 4 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3/2*(e%2), if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of phi(q)^2 * phi(-q^3)^2 / (phi(-q^2) * phi(-q^6)) = psi(q) * psi(-q^3) * (chi(q) * chi(-q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of (2*a(q) + 3*a(q^2) - 2*a(q^4)) / 3 = (b(q) - 2*b(q^4)) * (b(q) - 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^2)^8 * eta(q^3)^4 * eta(q^12) / (eta(q)^4 * eta(q^4)^3 * eta(q^6)^4) in powers of q.
Euler transform of period 12 sequence [ 4, -4, 0, -1, 4, -4, 4, -1, 0, -4, 4, -2, ...].
Moebius transform is period 12 sequence [ 4, 2, 0, -6, -4, 0, 4, 6, 0, -2, -4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 48^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A253625.
a(n) = 4*b(n) where b() is multiplicative with b(2^e) = (3/4) * (1 - (-1)^e) if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (1 + (k mod 2)) * q^k / (1 - q^k + q^(2*k)).
G.f.: Product_{k>0} (1 + q^k) * (1 - q^(2*k)) * (1 - q^(3*k)) * (1 + q^(6*k)) / ((1 + q^(2*k)) * (1 - q^k + q^(2*k)))^3.
a(n) = (-1)^n * A244339(n). a(2*n) = A004016(n). a(2*n + 1) = 4 * A033762(n). a(3*n) = a(n). a(6*n + 1) = 4 * A097195(n). a(6*n + 2) = 6 * A033687(n). a(6*n + 4) = a(6*n = 5) = 0.
a(12*n + 1) = 4 * A123884(n). a(12*n + 2) = 6 * A097195(n). a(12*n + 3) = 4 * A112604(n). a(12*n + 7) = 8 * A121361(n). a(12*n + 9) = 4 * A112605(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Dec 30 2023
Previous Showing 11-18 of 18 results.